Results 11  20
of
541
Graph mining: laws, generators, and algorithms
 ACM COMPUT SURV (CSUR
, 2006
"... How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in ..."
Abstract

Cited by 132 (7 self)
 Add to MetaCart
How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in database terminology can be represented as a graph. A lot of these questions boil down to the following: “How can we generate synthetic but realistic graphs? ” To answer this, we must first understand what patterns are common in realworld graphs and can thus be considered a mark of normality/realism. This survey give an overview of the incredible variety of work that has been done on these problems. One of our main contributions is the integration of points of view from physics, mathematics, sociology, and computer science. Further, we briefly describe recent advances on some related and interesting graph problems.
Kronecker Graphs: An Approach to Modeling Networks
 JOURNAL OF MACHINE LEARNING RESEARCH 11 (2010) 9851042
, 2010
"... How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the ei ..."
Abstract

Cited by 123 (3 self)
 Add to MetaCart
How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the eigenvalues and eigenvectors, small diameters, and densification and shrinking diameters over time. Current network models and generators either fail to match several of the above properties, are complicated to analyze mathematically, or both. Here we propose a generative model for networks that is both mathematically tractable and can generate networks that have all the above mentioned structural properties. Our main idea here is to use a nonstandard matrix operation, the Kronecker product, to generate graphs which we refer to as “Kronecker graphs”. First, we show that Kronecker graphs naturally obey common network properties. In fact, we rigorously prove that they do so. We also provide empirical evidence showing that Kronecker graphs can effectively model the structure of real networks. We then present KRONFIT, a fast and scalable algorithm for fitting the Kronecker graph generation model to large real networks. A naive approach to fitting would take superexponential
Inferring Networks of Diffusion and Influence
, 2010
"... Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in ..."
Abstract

Cited by 116 (13 self)
 Add to MetaCart
Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NPhard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and in practice gives provably nearoptimal performance. We demonstrate the effectiveness of our approach by tracing information cascades in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news tends to have a coreperiphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.
Topic modeling with network regularization
 In Proc. of the 17th WWW Conference
, 2008
"... In this paper, we formally define the problem of topic modeling with network structure (TMN). We propose a novel solution to this problem, which regularizes a statistical topic model with a harmonic regularizer based on a graph structure in the data. The proposed method combines topic modeling and s ..."
Abstract

Cited by 102 (9 self)
 Add to MetaCart
(Show Context)
In this paper, we formally define the problem of topic modeling with network structure (TMN). We propose a novel solution to this problem, which regularizes a statistical topic model with a harmonic regularizer based on a graph structure in the data. The proposed method combines topic modeling and social network analysis, and leverages the power of both statistical topic models and discrete regularization. The output of this model can summarize well topics in text, map a topic onto the network, and discover topical communities. With appropriate instantiations of the topic model and the graphbased regularizer, our model can be applied to a wide range of text mining problems such as authortopic analysis, community discovery, and spatial text mining. Empirical experiments on two data sets with different genres show that our approach is effective and outperforms both textoriented methods and networkoriented methods alone. The proposed model is general; it can be applied to any text collections with a mixture of topics and an associated network structure.
An eventbased framework for characterizing the evolution of interaction graphs
, 2007
"... Interaction graphs are ubiquitous in many fields such as bioinformatics, sociology and physical sciences. There have been many studies in the literature targeted at studying and mining these graphs. However, almost all of them have studied these graphs from a static point of view. The study of the e ..."
Abstract

Cited by 95 (3 self)
 Add to MetaCart
(Show Context)
Interaction graphs are ubiquitous in many fields such as bioinformatics, sociology and physical sciences. There have been many studies in the literature targeted at studying and mining these graphs. However, almost all of them have studied these graphs from a static point of view. The study of the evolution of these graphs over time can provide tremendous insight on the behavior of entities, communities and the flow of information among them. In this work, we present an eventbased characterization of critical behavioral patterns for temporally varying interaction graphs. We use nonoverlapping snapshots of interaction graphs and develop a framework for capturing and identifying interesting events from them. We use these events to characterize complex behavioral patterns of individuals and communities over time. We show how semantic information can be incorporated to reason about communitybehavior events. We also demonstrate the application of behavioral patterns for the purposes of modeling evolution, link prediction and influence maximization. Finally, we present a diffusion model for evolving networks, based on our framework.
On Unbiased Sampling for Unstructured PeertoPeer Networks
 in Proc. ACM IMC
, 2006
"... This paper addresses the difficult problem of selecting representative samples of peer properties (e.g., degree, link bandwidth, number of files shared) in unstructured peertopeer systems. Due to the large size and dynamic nature of these systems, measuring the quantities of interest on every peer ..."
Abstract

Cited by 81 (8 self)
 Add to MetaCart
(Show Context)
This paper addresses the difficult problem of selecting representative samples of peer properties (e.g., degree, link bandwidth, number of files shared) in unstructured peertopeer systems. Due to the large size and dynamic nature of these systems, measuring the quantities of interest on every peer is often prohibitively expensive, while sampling provides a natural means for estimating systemwide behavior efficiently. However, commonlyused sampling techniques for measuring peertopeer systems tend to introduce considerable bias for two reasons. First, the dynamic nature of peers can bias results towards shortlived peers, much as naively sampling flows in a router can lead to bias towards shortlived flows. Second, the heterogeneous nature of the overlay topology can lead to bias towards highdegree peers. We present a detailed examination of the ways that the behavior of peertopeer systems can introduce bias and suggest the Metropolized Random Walk with Backtracking (MRWB) as a viable and promising technique for collecting nearly unbiased samples. We conduct an extensive simulation study to demonstrate that the proposed technique works well for a wide variety of common peertopeer network conditions. Using the Gnutella network, we empirically show that our implementation of the MRWB technique yields more accurate samples than relying on commonlyused sampling techniques. Furthermore, we provide insights into the causes of the observed differences. The tool we have developed, ionsampler, selects peer addresses uniformly at random using the MRWB technique. These addresses may then be used as input to another measurement tool to collect data on a particular property.
The diameter of opportunistic mobile networks
, 2007
"... Portable devices have more data storage and increasing communication capabilities everyday. In addition to classic infrastructure based communication, these devices can exploit human mobility and opportunistic contacts to communicate. We analyze the characteristics of such opportunistic forwarding p ..."
Abstract

Cited by 75 (15 self)
 Add to MetaCart
(Show Context)
Portable devices have more data storage and increasing communication capabilities everyday. In addition to classic infrastructure based communication, these devices can exploit human mobility and opportunistic contacts to communicate. We analyze the characteristics of such opportunistic forwarding paths. We establish that opportunistic mobile networks in general are characterized by a small diameter, a destination device is reachable using only a small number of relays under tight delay constraint. This property is first demonstrated analytically on a family of mobile networks which follow a random graph process. We then establish the validity of this result empirically with four data sets capturing human mobility, using a new methodology to efficiently compute all the paths that impact the diameter of an opportunistic mobile networks. We complete our analysis of network diameter by studying the impact of intensity of contact rate and contact duration. This work is, to our knowledge, the first validation that the so called “small world ” phenomenon applies very generally to opportunistic networking between mobile nodes. 1.
A framework for analysis of dynamic social networks
 DIMACS Technical Report
, 2006
"... Finding patterns of social interaction within a population has wideranging applications including: disease modeling, cultural and information transmission, and behavioral ecology. Social interactions are often modeled with networks. A key characteristic of social interactions is their continual cha ..."
Abstract

Cited by 74 (10 self)
 Add to MetaCart
(Show Context)
Finding patterns of social interaction within a population has wideranging applications including: disease modeling, cultural and information transmission, and behavioral ecology. Social interactions are often modeled with networks. A key characteristic of social interactions is their continual change. However, most past analyses of social networks are essentially static in that all information about the time that social interactions take place is discarded. In this paper, we propose a new mathematical and computational framework that enables analysis of dynamic social networks and that explicitly makes use of information about when social interactions occur.