Results 1  10
of
307
MIMO Broadcast Channels With FiniteRate Feedback
, 2006
"... Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e., multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this correspondence, a system where each receiver has per ..."
Abstract

Cited by 189 (1 self)
 Add to MetaCart
Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e., multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this correspondence, a system where each receiver has perfect channel knowledge, but the transmitter only receives quantized information regarding the channel instantiation is analyzed. The wellknown zeroforcing transmission technique is considered, and simple expressions for the throughput degradation due to finiterate feedback are derived. A key finding is that the feedback rate per mobile must be increased linearly with the signaltonoise ratio (SNR) (in decibels) in order to achieve the full multiplexing gain. This is in sharp contrast to pointtopoint multipleinput multipleoutput (MIMO) systems, in which it is not necessary to increase the feedback rate as a function of the SNR.
MIMO broadcast channels with finite rate feedback
 IEEE Trans. on Inform. Theory
, 2006
"... Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e. multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this paper, a system where each receiver has perfect channe ..."
Abstract

Cited by 155 (10 self)
 Add to MetaCart
(Show Context)
Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e. multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this paper, a system where each receiver has perfect channel knowledge, but the transmitter only receives quantized information regarding the channel instantiation is analyzed. The well known zero forcing transmission technique is considered, and simple expressions for the throughput degradation due to finite rate feedback are derived. A key finding is that the feedback rate per mobile must be increased linearly with the SNR (in dB) in order to achieve the full multiplexing gain, which is in sharp contrast to pointtopoint MIMO systems in which it is not necessary to increase the feedback rate as a function of the SNR. I.
Multiantenna downlink channels with limited feedback and user selection
 IEEE J. Select. Areas Commun
, 2007
"... Abstract — We analyze the sumrate performance of a multiantenna downlink system carrying more users than transmit antennas, with partial channel knowledge at the transmitter due to finite rate feedback. In order to exploit multiuser diversity, we show that the transmitter must have, in addition to ..."
Abstract

Cited by 119 (2 self)
 Add to MetaCart
(Show Context)
Abstract — We analyze the sumrate performance of a multiantenna downlink system carrying more users than transmit antennas, with partial channel knowledge at the transmitter due to finite rate feedback. In order to exploit multiuser diversity, we show that the transmitter must have, in addition to directional information, information regarding the quality of each channel. Such information should reflect both the channel magnitude and the quantization error. Expressions for the SINR distribution and the sumrate are derived, and tradeoffs between the number of feedback bits, the number of users, and the SNR are observed. In particular, for a target performance, having more users reduces feedback load. Index Terms — MIMO, quantized feedback, limited feedback, zeroforcing beamforming, multiuser diversity, broadcast channel,
Multiuser MIMO Achievable Rates with Downlink Training and Channel State Feedback
"... We consider a MIMO fading broadcast channel and compute achievable ergodic rates when channel state information is acquired at the receivers via downlink training and it is provided to the transmitter by channel state feedback. Unquantized (analog) and quantized (digital) channel state feedback sche ..."
Abstract

Cited by 114 (8 self)
 Add to MetaCart
We consider a MIMO fading broadcast channel and compute achievable ergodic rates when channel state information is acquired at the receivers via downlink training and it is provided to the transmitter by channel state feedback. Unquantized (analog) and quantized (digital) channel state feedback schemes are analyzed and compared under various assumptions. Digital feedback is shown to be potentially superior when the feedback channel uses per channel state coefficient is larger than 1. Also, we show that by proper design of the digital feedback link, errors in the feedback have a minor effect even if simple uncoded modulation is used on the feedback channel. We discuss first the case of an unfaded AWGN feedback channel with orthogonal access and then the case of fading MIMO multiaccess (MIMOMAC). We show that by exploiting the MIMOMAC nature of the uplink channel, a much better scaling of the feedback channel resource with the number of base station antennas can be achieved. Finally, for the case of delayed feedback, we show that in the realistic case where the fading process has (normalized) maximum Doppler frequency shift 0 ≤ F < 1/2, a fraction 1 − 2F of the optimal multiplexing gain is achievable. The general conclusion of this work is that very significant downlink throughput is achievable with simple and efficient channel state feedback, provided that the feedback link is properly designed.
Weighted SumRate Maximization using Weighted MMSE for MIMOBC Beamforming Design
 IEEE Trans. on Wireless Comm
, 2008
"... Abstract—This paper studies linear transmit filter design for Weighted SumRate (WSR) maximization in the Multiple Input Multiple Output Broadcast Channel (MIMOBC). The problem of finding the optimal transmit filter is nonconvex and intractable to solve using low complexity methods. Motivated by r ..."
Abstract

Cited by 59 (2 self)
 Add to MetaCart
(Show Context)
Abstract—This paper studies linear transmit filter design for Weighted SumRate (WSR) maximization in the Multiple Input Multiple Output Broadcast Channel (MIMOBC). The problem of finding the optimal transmit filter is nonconvex and intractable to solve using low complexity methods. Motivated by recent results highlighting the relationship between mutual information and Minimum Mean Square Error (MMSE), this paper establishes a relationship between weighted sumrate and weighted MMSE in the MIMOBC. The relationship is used to propose two low complexity algorithms for finding a local weighted sumrate optimum based on alternating optimization. Numerical results studying sumrate show that the proposed algorithms achieve high performance with few iterations. Index Terms—MIMO systems, transceiver design, smart antennas, antennas and propagation. I.
Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback
 IEEE TRANS. INF. THEORY
, 2012
"... ..."
Network mimo with linear zeroforcing beamforming: Large system analysis, impact of channel estimation, and reducedcomplexity scheduling,” Information Theory
 IEEE Transactions on
, 2012
"... iv ..."
(Show Context)
Zero Forcing Precoding and Generalized Inverses
"... We consider the problem of linear zero forcing precoding design, and discuss its relation to the theory of generalized inverses in linear algebra. Special attention is given to a specific generalized inverse known as the pseudoinverse. We begin with the standard design under the assumption of a tot ..."
Abstract

Cited by 52 (0 self)
 Add to MetaCart
(Show Context)
We consider the problem of linear zero forcing precoding design, and discuss its relation to the theory of generalized inverses in linear algebra. Special attention is given to a specific generalized inverse known as the pseudoinverse. We begin with the standard design under the assumption of a total power constraint and prove that precoders based on the pseudoinverse are optimal in this setting. Then, we proceed to examine individual perantenna power constraints. In this case, the pseudoinverse is not necessarily the optimal generalized inverse. In fact, finding the optimal inverse is nontrivial and depends on the specific performance measure. We address two common criteria, fairness and throughput, and show that the optimal matrices may be found using standard convex optimization methods. We demonstrate the improved performance offered by our approach using computer simulations.
Design and Experimental Evaluation of MultiUser Beamforming in Wireless LANs
"... MultiUser MIMO promises to increase the spectral efficiency of next generation wireless systems and is currently being incorporated in future industry standards. Although a significant amount of research has focused on theoretical capacity analysis, little is known about the performance of such sys ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
(Show Context)
MultiUser MIMO promises to increase the spectral efficiency of next generation wireless systems and is currently being incorporated in future industry standards. Although a significant amount of research has focused on theoretical capacity analysis, little is known about the performance of such systems in practice. In this paper, we present the design and implementation of the first multiuser beamforming system and experimental framework for wireless LANs. Using extensive measurements in an indoor environment, we evaluate the impact of receiver separation distance, outdated channel information due to mobility and environmental variation, and the potential for increasing spatial reuse. For the measured indoor environment, our results reveal that two receivers achieve close to maximum performance with a minimum separation distance of a quarter of a wavelength. We also show that the required channel information update rate is dependent on environmental variation and user mobility as well as a perlink SNR requirement. Assuming that a link can tolerate an SNR decrease of 3 dB, the required channel update rate is equal to 100 and 10 ms for nonmobile receivers and mobile receivers with a pedestrian speed of 3 mph respectively. Our results also show that spatial reuse can be increased by efficiently eliminating interference at any desired location; however, this may come at the expense of a significant drop in the quality of the served users.
From Single user to Multiuser Communications: Shifting the MIMO paradigm
 IEEE Sig. Proc. Magazine
, 2007
"... In multiuser MIMO networks, the spatial degrees of freedom offered by multiple antennas can be advantageously exploited to enhance the system capacity, by scheduling multiple users to simultaneously share the spatial channel. This entails a fundamental paradigm shift from single user communications, ..."
Abstract

Cited by 46 (13 self)
 Add to MetaCart
(Show Context)
In multiuser MIMO networks, the spatial degrees of freedom offered by multiple antennas can be advantageously exploited to enhance the system capacity, by scheduling multiple users to simultaneously share the spatial channel. This entails a fundamental paradigm shift from single user communications, since multiuser systems can experience substantial benefit from channel state information at the transmitter and, at the same time, require more complex scheduling strategies and transceiver methodologies. This paper reviews multiuser MIMO communication from an algorithmic perspective, discussing performance gains, tradeoffs, and practical considerations. Several approaches including nonlinear and linear channelaware precoding are reviewed, along with more practical limited feedback schemes that require only partial channel state information. The interaction between precoding and scheduling is discussed. Several promising strategies for limited multiuser feedback design are looked at, some of which are inspired from the single user MIMO precoding scenario while others are fully specific to the multiuser setting. 1 DRAFT