Results 1  10
of
814
The structure and function of complex networks
 SIAM REVIEW
, 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract

Cited by 2600 (7 self)
 Add to MetaCart
(Show Context)
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the smallworld effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Knowledge acquisition via incremental conceptual clustering
 Machine Learning
, 1987
"... hill climbing Abstract. Conceptual clustering is an important way of summarizing and explaining data. However, the recent formulation of this paradigm has allowed little exploration of conceptual clustering as a means of improving performance. Furthermore, previous work in conceptual clustering has ..."
Abstract

Cited by 765 (9 self)
 Add to MetaCart
(Show Context)
hill climbing Abstract. Conceptual clustering is an important way of summarizing and explaining data. However, the recent formulation of this paradigm has allowed little exploration of conceptual clustering as a means of improving performance. Furthermore, previous work in conceptual clustering has not explicitly dealt with constraints imposed by real world environments. This article presents COBWEB, a conceptual clustering system that organizes data so as to maximize inference ability. Additionally, COBWEB is incremental and computationally economical, and thus can be flexibly applied in a variety of domains. 1.
Robust Data Clustering
, 2003
"... We address the problem of robust clustering by combining data partitions (forming a clustering ensemble) produced by multiple clusterings. We formulate robust clustering under an informationtheoretical framework; mutual information is the underlying concept used in the definition of quantitative me ..."
Abstract

Cited by 273 (8 self)
 Add to MetaCart
We address the problem of robust clustering by combining data partitions (forming a clustering ensemble) produced by multiple clusterings. We formulate robust clustering under an informationtheoretical framework; mutual information is the underlying concept used in the definition of quantitative measures of agreement or consistency between data partitions. Robustness is assessed by variance of the cluster membership, based on bootstrapping. We propose and analyze a voting mechanism on pairwise associations of patterns for combining data partitions. We show that the proposed technique attempts to optimize the mutual information based criteria, although the optimality is not ensured in all situations. This evidence accumulation method is demonstrated by combining the wellknown Kmeans algorithm to produce clustering ensembles. Experimental results show the ability of the technique to identify clusters with arbitrary shapes and sizes.
Extensions to the kMeans Algorithm for Clustering Large Data Sets with Categorical Values
, 1998
"... The kmeans algorithm is well known for its efficiency in clustering large data sets. However, working only on numeric values prohibits it from being used to cluster real world data containing categorical values. In this paper we present two algorithms which extend the kmeans algorithm to categoric ..."
Abstract

Cited by 264 (3 self)
 Add to MetaCart
The kmeans algorithm is well known for its efficiency in clustering large data sets. However, working only on numeric values prohibits it from being used to cluster real world data containing categorical values. In this paper we present two algorithms which extend the kmeans algorithm to categorical domains and domains with mixed numeric and categorical values. The kmodes algorithm uses a simple matching dissimilarity measure to deal with categorical objects, replaces the means of clusters with modes, and uses a frequencybased method to update modes in the clustering process to minimise the clustering cost function. With these extensions the kmodes algorithm enables the clustering of categorical data in a fashion similar to kmeans. The kprototypes algorithm, through the definition of a combined dissimilarity measure, further integrates the kmeans and kmodes algorithms to allow for clustering objects described by mixed numeric and categorical attributes. We use the well known soybean disease and credit approval data sets to demonstrate the clustering performance of the two algorithms. Our experiments on two real world data sets with half a million objects each show that the two algorithms are efficient when clustering large data sets, which is critical to data mining applications.
Incremental Clustering and Dynamic Information Retrieval
, 1997
"... Motivated by applications such as document and image classification in information retrieval, we consider the problem of clustering dynamic point sets in a metric space. We propose a model called incremental clustering which is based on a careful analysis of the requirements of the information retri ..."
Abstract

Cited by 191 (4 self)
 Add to MetaCart
(Show Context)
Motivated by applications such as document and image classification in information retrieval, we consider the problem of clustering dynamic point sets in a metric space. We propose a model called incremental clustering which is based on a careful analysis of the requirements of the information retrieval application, and which should also be useful in other applications. The goal is to efficiently maintain clusters of small diameter as new points are inserted. We analyze several natural greedy algorithms and demonstrate that they perform poorly. We propose new deterministic and randomized incremental clustering algorithms which have a provably good performance. We complement our positive results with lower bounds on the performance of incremental algorithms. Finally, we consider the dual clustering problem where the clusters are of fixed diameter, and the goal is to minimize the number of clusters.
Knowledge Discovery from Users WebPage Navigation
 in Proceedings of workshop on research issues in Data engineering
, 1997
"... We propose to detect users navigationpaths to the advantage of website owners. First, we explain the design and implementationof a profiler which captures client’s selected links and pages order, accurate page viewing time and cache references, using a Java based remote agent. The information captu ..."
Abstract

Cited by 177 (10 self)
 Add to MetaCart
(Show Context)
We propose to detect users navigationpaths to the advantage of website owners. First, we explain the design and implementationof a profiler which captures client’s selected links and pages order, accurate page viewing time and cache references, using a Java based remote agent. The information captured by the profiler is then utilized by a knowledge discovery technique to cluster users with similar interests. We introduce a novel path clustering method based on the similarity of the history of user navigation. This approach is capable of capturing the interests of the user which could persist through several subsequent hypertext link selections. Finally, we evaluate our path clustering technique via a simulation study on a sample WWWsite. We show that depending on the level of inserted noise, we can recover the correct clusters by %10%27 of average error margin. 1.
Prediction of local structure in proteins using a library of sequencestructure motifs
 J. MOL. BIOL
, 1998
"... ..."
(Show Context)
Aligning Gene Expression Time Series With Time Warping Algorithms
, 2001
"... Motivation: Increasingly, biological processes are being studied through time series of RNA expression data collected for large numbers of genes. Because common processes may unfold at varying rates in different experiments or individuals, methods are needed that will allow corresponding expression ..."
Abstract

Cited by 150 (3 self)
 Add to MetaCart
Motivation: Increasingly, biological processes are being studied through time series of RNA expression data collected for large numbers of genes. Because common processes may unfold at varying rates in different experiments or individuals, methods are needed that will allow corresponding expression states in different time series to be mapped to one another. Results: We present implementations of time warping algorithms applicable to RNA and protein expression data and demonstrate their application to published yeast RNA expression time series. Programs executing two warping algorithms are described, a simple warping algorithm and an interpolative algorithm, along with programs that generate graphics that visually present alignment information. We show time warping to be superior to simple clustering at mapping corresponding time states. We document the impact of statistical measurement noise and sample size on the quality of time alignments, and present issues related to statistical assessment of alignment quality through alignment scores. We also discuss directions for algorithm improvement including development of multiple time series alignments and possible applications to causality searches and nontemporal processes (`concentration warping'). Availability: Academic implementations of alignment programs genewarp and genewarpi and the graphics generation programs grphwarp and grphwarpi are available as Win32 system DOS box executables on our web site along with documentation on their use. The publicly available data on which they were demonstrated may be found at http://genomewww.stanford.edu/cellcycle/. Postscript files generated by grphwarp and grphwarpi may be directly printed or viewed using GhostView software available at http://www.cs.wisc.edu/#ghost/. Con...
Graph mining: laws, generators, and algorithms
 ACM COMPUT SURV (CSUR
, 2006
"... How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in ..."
Abstract

Cited by 132 (7 self)
 Add to MetaCart
How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in database terminology can be represented as a graph. A lot of these questions boil down to the following: “How can we generate synthetic but realistic graphs? ” To answer this, we must first understand what patterns are common in realworld graphs and can thus be considered a mark of normality/realism. This survey give an overview of the incredible variety of work that has been done on these problems. One of our main contributions is the integration of points of view from physics, mathematics, sociology, and computer science. Further, we briefly describe recent advances on some related and interesting graph problems.