Results 11  20
of
263
Stability results for random sampling of sparse trigonometric polynomials
, 2006
"... Recently, it has been observed that a sparse trigonometric polynomial, i.e. having only a small number of nonzero coefficients, can be reconstructed exactly from a small number of random samples using Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). In the present article it is shown that ..."
Abstract

Cited by 65 (17 self)
 Add to MetaCart
(Show Context)
Recently, it has been observed that a sparse trigonometric polynomial, i.e. having only a small number of nonzero coefficients, can be reconstructed exactly from a small number of random samples using Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). In the present article it is shown that recovery both by a BP variant and by OMP is stable under perturbation of the samples values by noise. For BP in addition, the stability result is extended to (nonsparse) trigonometric polynomials that can be wellapproximated by sparse ones. The theoretical findings are illustrated by numerical experiments. Key Words: random sampling, trigonometric polynomials, Orthogonal Matching Pursuit, Basis Pursuit, compressed sensing, stability under noise, fast Fourier transform, nonequispaced
Precise Undersampling Theorems
"... Undersampling Theorems state that we may gather far fewer samples than the usual sampling theorem while exactly reconstructing the object of interest – provided the object in question obeys a sparsity condition, the samples measure appropriate linear combinations of signal values, and we reconstruc ..."
Abstract

Cited by 60 (4 self)
 Add to MetaCart
Undersampling Theorems state that we may gather far fewer samples than the usual sampling theorem while exactly reconstructing the object of interest – provided the object in question obeys a sparsity condition, the samples measure appropriate linear combinations of signal values, and we reconstruct with a particular nonlinear procedure. While there are many ways to crudely demonstrate such undersampling phenomena, we know of only one approach which precisely quantifies the true sparsityundersampling tradeoff curve of standard algorithms and standard compressed sensing matrices. That approach, based on combinatorial geometry, predicts the exact location in sparsityundersampling domain where standard algorithms exhibit phase transitions in performance. We review the phase transition approach here and describe the broad range of cases where it applies. We also mention exceptions and state challenge problems for future research. Sample result: one can efficiently reconstruct a ksparse signal of length N from n measurements, provided n � 2k · log(N/n), for (k, n, N) large, k ≪ N.
Squareroot lasso: pivotal recovery of sparse signals via conic programming
 Biometrika
, 2011
"... ar ..."
(Show Context)
Restricted Eigenvalue Properties for Correlated Gaussian Designs
"... Methods based onℓ1relaxation, such as basis pursuit and the Lasso, are very popular for sparse regression in high dimensions. The conditions for success of these methods are now wellunderstood: (1) exact recovery in the noiseless setting is possible if and only if the design matrix X satisfies the ..."
Abstract

Cited by 54 (5 self)
 Add to MetaCart
Methods based onℓ1relaxation, such as basis pursuit and the Lasso, are very popular for sparse regression in high dimensions. The conditions for success of these methods are now wellunderstood: (1) exact recovery in the noiseless setting is possible if and only if the design matrix X satisfies the restricted nullspace property, and (2) the squaredℓ2error of a Lasso estimate decays at the minimax k log p n optimal rate, where k is the sparsity of the pdimensional regression problem with additive Gaussian noise, whenever the design satisfies a restricted eigenvalue condition. The key issue is thus to determine when the design matrix X satisfies these desirable properties. Thus far, there have been numerous results showing that the restricted isometry property, which implies both the restricted nullspace and eigenvalue conditions, is satisfied when all entries of X are independent and identically distributed (i.i.d.), or the rows are unitary. This paper proves directly that the restricted nullspace and eigenvalue conditions hold with high probability for quite general classes of Gaussian matrices for which the predictors may be highly dependent, and hence restricted isometry conditions can be violated with high probability. In this way, our results extend the attractive theoretical guarantees onℓ1relaxations to a much broader class of problems than the case of completely independent or unitary designs.
Compressed sensing: how sharp is the restricted isometry property?
, 2009
"... Compressed sensing is a recent technique by which signals can be measured at a rate proportional to their information content, combining the important task of compression directly into the measurement process. Since its introduction in 2004 there have been hundreds of manuscripts on compressed sens ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
(Show Context)
Compressed sensing is a recent technique by which signals can be measured at a rate proportional to their information content, combining the important task of compression directly into the measurement process. Since its introduction in 2004 there have been hundreds of manuscripts on compressed sensing, a large fraction of which have focused on the design and analysis of algorithms to recover a signal from its compressed measurements. The Restricted Isometry Property (RIP) has become a ubiquitous property assumed in their analysis. We present the best known bounds on the RIP, and in the process illustrate the way in which the combinatorial nature of compressed sensing is controlled. Our quantitative bounds on the RIP allow precise statements as to how aggressively a signal can be undersampled, the essential question for practitioners.
Stable image reconstruction using total variation minimization
 SIAM Journal on Imaging Sciences
, 2013
"... This article presents nearoptimal guarantees for accurate and robust image recovery from undersampled noisy measurements using total variation minimization, and our results may be the first of this kind. In particular, we show that from O(s log(N)) nonadaptive linear measurements, an image can be ..."
Abstract

Cited by 50 (2 self)
 Add to MetaCart
(Show Context)
This article presents nearoptimal guarantees for accurate and robust image recovery from undersampled noisy measurements using total variation minimization, and our results may be the first of this kind. In particular, we show that from O(s log(N)) nonadaptive linear measurements, an image can be reconstructed to within the best sterm approximation of its gradient, up to a logarithmic factor. Along the way, we prove a strengthened Sobolev inequality for functions lying in the null space of a suitably incoherent matrix. 1
Compressive Sensing
, 2010
"... Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many poten ..."
Abstract

Cited by 50 (12 self)
 Add to MetaCart
Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as ℓ1minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overview on both theoretical and numerical aspects of compressive sensing.
General Deviants: An Analysis of Perturbations in Compressed Sensing
, 2009
"... Abstract—We analyze the Basis Pursuit recovery method when observing signals with general perturbations (i.e., additive, as well as multiplicative noise). This completely perturbed model extends the previous work of Candès, Romberg and Tao on stable signal recovery from incomplete and inaccurate mea ..."
Abstract

Cited by 48 (5 self)
 Add to MetaCart
(Show Context)
Abstract—We analyze the Basis Pursuit recovery method when observing signals with general perturbations (i.e., additive, as well as multiplicative noise). This completely perturbed model extends the previous work of Candès, Romberg and Tao on stable signal recovery from incomplete and inaccurate measurements. Our results show that, under suitable conditions, the stability of the recovered signal is limited by the noise level in the observation. Moreover, this accuracy is within a constant multiple of the bestcase reconstruction using the technique of least squares. I.
Almost optimal unrestricted fast johnsonlindenstrauss transform
 Noga Alon. Problems and results in extremal combinatorics–i. Discrete Mathematics
, 2003
"... The problems of random projections and sparse reconstruction have much in common and individually received much attention. Surprisingly, until now they progressed in parallel and remained mostly separate. Here, we employ new tools from probability in Banach spaces that were successfully used in the ..."
Abstract

Cited by 48 (1 self)
 Add to MetaCart
(Show Context)
The problems of random projections and sparse reconstruction have much in common and individually received much attention. Surprisingly, until now they progressed in parallel and remained mostly separate. Here, we employ new tools from probability in Banach spaces that were successfully used in the context of sparse reconstruction to advance on an open problem in random pojection. In particular, we generalize and use an intricate result by Rudelson and Vershynin for sparse reconstruction which uses Dudley’s theorem for bounding Gaussian processes. Our main result states that any set of N = exp ( Õ(n)) real vectors in n dimensional space can be linearly mapped to a space of dimension k = O(log N polylog(n)), while (1) preserving the pairwise distances among the vectors to within any constant distortion and (2) being able to apply the transformation in time O(n log n) on each vector. This improves on the best known N = exp ( Õ(n1/2)) achieved by Ailon and Liberty and N = exp ( Õ(n1/3)) by Ailon and Chazelle. The dependence in the distortion constant however is believed to be suboptimal and subject to further investigation. For constant distortion, this settles the open question posed by these authors up to a polylog(n) factor while considerably simplifying their constructions. 1
Restricted isometries for partial random circulant matrices
 APPL. COMPUT. HARMON. ANAL
, 2010
"... In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampl ..."
Abstract

Cited by 47 (8 self)
 Add to MetaCart
(Show Context)
In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a dataacquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the sth order restricted isometry constant is small when the number m of samples satisfies m � (s log n) 3/2, where n is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling.