Results 1 
4 of
4
Network Sampling: From Static to Streaming Graphs
, 2013
"... Network sampling is integral to the analysis of social, information, and biological networks. Since many realworld networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorou ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
Network sampling is integral to the analysis of social, information, and biological networks. Since many realworld networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling, by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topologybased sampling. Experimental results indicate that our proposed family of sampling methods more accurately preserve the underlying properties of the graph in both static and streaming domains. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms.
An InDepth Study of Stochastic Kronecker Graphs
, 2010
"... Graph analysis is playing an increasingly important ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
(Show Context)
Graph analysis is playing an increasingly important
Learning multifractal structure in large networks
"... Generating random graphs to model networks has a rich history. In this paper, we analyze and improve upon the multifractal network generator (MFNG) introduced by Palla et al. We provide a new result on the probability of subgraphs existing in graphs generated with MFNG. From this result it follows t ..."
Abstract
 Add to MetaCart
(Show Context)
Generating random graphs to model networks has a rich history. In this paper, we analyze and improve upon the multifractal network generator (MFNG) introduced by Palla et al. We provide a new result on the probability of subgraphs existing in graphs generated with MFNG. From this result it follows that we can quickly compute moments of an important set of graph properties, such as the expected number of edges, stars, and cliques. Specifically, we show how to compute these moments in time complexity independent of the size of the graph and the number of recursive levels in the generative model. We leverage this theory to a new method of moments algorithm for fitting large networks to MFNG. Empirically, this new approach effectively simulates properties of several social and information networks. In terms of matching subgraph counts, our method outperforms similar algorithms used with the Stochastic Kronecker Graph model. Furthermore, we present a fast approximation algorithm to generate graph instances following the multifractal structure. The approximation scheme is an improvement over previous methods, which ran in time complexity quadratic in the number of vertices. Combined, our method of moments and fast sampling scheme provide the first scalable framework for effectively modeling large networks with MFNG.