Results 1  10
of
126
Proximal Splitting Methods in Signal Processing
"... The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of inverse problems ..."
Abstract

Cited by 266 (31 self)
 Add to MetaCart
(Show Context)
The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of inverse problems and, especially, in signal processing, where it has become increasingly important. In this paper, we review the basic properties of proximity operators which are relevant to signal processing and present optimization methods based on these operators. These proximal splitting methods are shown to capture and extend several wellknown algorithms in a unifying framework. Applications of proximal methods in signal recovery and synthesis are discussed.
NESTA: A Fast and Accurate FirstOrder Method for Sparse Recovery
, 2009
"... Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel firstorder ..."
Abstract

Cited by 171 (2 self)
 Add to MetaCart
Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel firstorder methods in convex optimization, most notably Nesterov’s smoothing technique, this paper introduces a fast and accurate algorithm for solving common recovery problems in signal processing. In the spirit of Nesterov’s work, one of the key ideas of this algorithm is a subtle averaging of sequences of iterates, which has been shown to improve the convergence properties of standard gradientdescent algorithms. This paper demonstrates that this approach is ideally suited for solving largescale compressed sensing reconstruction problems as 1) it is computationally efficient, 2) it is accurate and returns solutions with several correct digits, 3) it is flexible and amenable to many kinds of reconstruction problems, and 4) it is robust in the sense that its excellent performance across a wide range of problems does not depend on the fine tuning of several parameters. Comprehensive numerical experiments on realistic signals exhibiting a large dynamic range show that this algorithm compares favorably with recently proposed stateoftheart methods. We also apply the algorithm to solve other problems for which there are fewer alternatives, such as totalvariation minimization, and
An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
 IEEE Trans. Image Process
, 2011
"... Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and con ..."
Abstract

Cited by 92 (9 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these problems (huge dimensionality, nonsmoothness) preclude the use of offtheshelf optimization tools and have stimulated a considerable amount of research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (often known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the family of augmented Lagrangian methods, can be used to deal with a variety of imaging IPLIP, including deconvolution and reconstruction from compressive observations (such as MRI), using either totalvariation or waveletbased (or, more generally, framebased) regularization. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence sufficient conditions are known; we show that these conditions are satisfied by the proposed algorithm. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is a strong contender for the stateoftheart. Index Terms—Convex optimization, frames, image reconstruction, image restoration, inpainting, totalvariation. A. Problem Formulation
Alternating direction algorithms for ℓ1problems in compressive sensing
, 2009
"... Abstract. In this paper, we propose and study the use of alternating direction algorithms for several ℓ1norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basispursuit denoising problems of both unconstrained and constr ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper, we propose and study the use of alternating direction algorithms for several ℓ1norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basispursuit denoising problems of both unconstrained and constrained forms, as well as others. We present and investigate two classes of algorithms derived from either the primal or the dual forms of the ℓ1problems. The construction of the algorithms consists of two main steps: (1) to reformulate an ℓ1problem into one having partially separable objective functions by adding new variables and constraints; and (2) to apply an exact or inexact alternating direction method to the resulting problem. The derived alternating direction algorithms can be regarded as firstorder primaldual algorithms because both primal and dual variables are updated at each and every iteration. Convergence properties of these algorithms are established or restated when they already exist. Extensive numerical results in comparison with several stateoftheart algorithms are given to demonstrate that the proposed algorithms are efficient, stable and robust. Moreover, we present numerical results to emphasize two practically important but perhaps overlooked points. One point is that algorithm speed should always be evaluated relative to appropriate solution accuracy; another is that whenever erroneous measurements possibly exist, the ℓ1norm fidelity should be the fidelity of choice in compressive sensing. Key words. Sparse solution recovery, compressive sensing, ℓ1minimization, primal, dual, alternating direction method
Generalized forwardbackward splitting
, 2011
"... This paper introduces the generalized forwardbackward splitting algorithm for minimizing convex functions of the form F + ∑ n i=1 Gi, where F has a Lipschitzcontinuous gradient and the Gi’s are simple in the sense that their Moreau proximity operators are easy to compute. While the forwardbackwar ..."
Abstract

Cited by 48 (9 self)
 Add to MetaCart
This paper introduces the generalized forwardbackward splitting algorithm for minimizing convex functions of the form F + ∑ n i=1 Gi, where F has a Lipschitzcontinuous gradient and the Gi’s are simple in the sense that their Moreau proximity operators are easy to compute. While the forwardbackward algorithm cannot deal with more than n = 1 nonsmooth function, our method generalizes it to the case of arbitrary n. Our method makes an explicit use of the regularity of F in the forward step, and the proximity operators of the Gi’s are applied in parallel in the backward step. This allows the generalized forwardbackward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of F. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.
A parallel inertial proximal optimization methods
 Pac. J. Optim
, 2012
"... The DouglasRachford algorithm is a popular iterative method for finding a zero of a sum of two maximally monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum ..."
Abstract

Cited by 37 (14 self)
 Add to MetaCart
(Show Context)
The DouglasRachford algorithm is a popular iterative method for finding a zero of a sum of two maximally monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of maximal operators. Based on this algorithm, parallel proximal algorithms are proposed to minimize over a linear subspace of a Hilbert space the sum of a finite number of proper, lower semicontinuous convex functions composed with linear operators. It is shown that particular cases of these methods are the simultaneous direction method of multipliers proposed by Stetzer et al., the parallel proximal algorithm developed by Combettes and Pesquet, and a parallelized version of an algorithm proposed by Attouch and Soueycatt.
Online Alternating Direction Method
 In ICML
, 2012
"... Online optimization has emerged as powerful tool in large scale optimization. In this paper, we introduce efficient online algorithms based on the alternating directions method (ADM). We introduce a new proof technique for ADM in the batch setting, which yields the O(1/T) convergence rate of ADM and ..."
Abstract

Cited by 37 (9 self)
 Add to MetaCart
(Show Context)
Online optimization has emerged as powerful tool in large scale optimization. In this paper, we introduce efficient online algorithms based on the alternating directions method (ADM). We introduce a new proof technique for ADM in the batch setting, which yields the O(1/T) convergence rate of ADM and forms the basis of regret analysis in the online setting. We consider two scenarios in the online setting, based on whether the solution needs to lie in the feasible set or not. In both settings, we establish regret bounds for both the objective function as well as constraint violation for general and strongly convex functions. Preliminary results are presented to illustrate the performance of the proposed algorithms. 1.
An Alternating Direction Method for Dual MAP LP Relaxation
"... Maximum aposteriori (MAP) estimation is an important task in many applications of probabilistic graphical models. Although finding an exact solution is generally intractable, approximations based on linear programming (LP) relaxation often provide good approximate solutions. In this paper we prese ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
(Show Context)
Maximum aposteriori (MAP) estimation is an important task in many applications of probabilistic graphical models. Although finding an exact solution is generally intractable, approximations based on linear programming (LP) relaxation often provide good approximate solutions. In this paper we present an algorithm for solving the LP relaxation optimization problem. In order to overcome the lack of strict convexity, we apply an augmented Lagrangian method to the dual LP. The algorithm, based on the alternating direction method of multipliers (ADMM), is guaranteed to converge to the global optimum of the LP relaxation objective. Our experimental results show that this algorithm is competitive with other stateoftheart algorithms for approximate MAP estimation.
1 BM3D frames and variational image deblurring
, 1106
"... Abstract—A family of the Block Matching 3D (BM3D) algorithms for various imaging problems has been recently proposed within the framework of nonlocal patchwise image modeling [1], [2]. In this paper we construct analysis and synthesis frames, formalizing the BM3D image modeling and use these frame ..."
Abstract

Cited by 28 (8 self)
 Add to MetaCart
(Show Context)
Abstract—A family of the Block Matching 3D (BM3D) algorithms for various imaging problems has been recently proposed within the framework of nonlocal patchwise image modeling [1], [2]. In this paper we construct analysis and synthesis frames, formalizing the BM3D image modeling and use these frames to develop novel iterative deblurring algorithms. We consider two different formulations of the deblurring problem: one given by minimization of the single objective function and another based on the Nash equilibrium balance of two objective functions. The latter results in an algorithm where the denoising and deblurring operations are decoupled. The convergence of the developed algorithms is proved. Simulation experiments show that the decoupled algorithm derived from the Nash equilibrium formulation demonstrates the best numerical and visual results and shows superiority with respect to the state of the art in the field, confirming a valuable potential of BM3Dframes as an advanced image modeling tool. I.