Results 1 - 10
of
130
High-quality Motion Deblurring from a Single Image
, 2008
"... Figure 1 High quality single image motion-deblurring. The left sub-figure shows one captured image using a hand-held camera under dim light. It is severely blurred by an unknown kernel. The right sub-figure shows our deblurred image result computed by estimating both the blur kernel and the unblurre ..."
Abstract
-
Cited by 184 (6 self)
- Add to MetaCart
Figure 1 High quality single image motion-deblurring. The left sub-figure shows one captured image using a hand-held camera under dim light. It is severely blurred by an unknown kernel. The right sub-figure shows our deblurred image result computed by estimating both the blur kernel and the unblurred latent image. We show several close-ups of blurred/unblurred image regions for comparison. We present a new algorithm for removing motion blur from a single image. Our method computes a deblurred image using a unified probabilistic model of both blur kernel estimation and unblurred image restoration. We present an analysis of the causes of common artifacts found in current deblurring methods, and then introduce several novel terms within this probabilistic model that are inspired by our analysis. These terms include a model of the spatial randomness of noise in the blurred image, as well a new local smoothness prior that reduces ringing artifacts by constraining contrast in the unblurred image wherever the blurred image exhibits low contrast. Finally, we describe an efficient optimization scheme that alternates between blur kernel estimation and unblurred image restoration until convergence. As a result of these steps, we are able to produce high quality deblurred results in low computation time. We are even able to produce results of comparable quality to techniques that require additional input images beyond a single blurry photograph, and to methods that require additional hardware.
Fast Motion Deblurring
"... This paper presents a fast deblurring method that produces a deblurring result from a single image of moderate size in a few seconds. We accelerate both latent image estimation and kernel estimation in an iterative deblurring process by introducing a novel prediction step and working with image deri ..."
Abstract
-
Cited by 128 (12 self)
- Add to MetaCart
This paper presents a fast deblurring method that produces a deblurring result from a single image of moderate size in a few seconds. We accelerate both latent image estimation and kernel estimation in an iterative deblurring process by introducing a novel prediction step and working with image derivatives rather than pixel values. In the prediction step, we use simple image processing techniques to predict strong edges from an estimated latent image, which will be solely used for kernel estimation. With this approach, a computationally efficient Gaussian prior becomes sufficient for deconvolution to estimate the latent image, as small deconvolution artifacts can be suppressed in the prediction. For kernel estimation, we formulate the optimization function using image derivatives, and accelerate the numerical process by reducing the number of Fourier transforms needed for a conjugate gradient method. We also show that the formulation results in a smaller condition number of the numerical system than the use of pixel values, which gives faster convergence. Experimental results demonstrate that our method runs an order of magnitude faster than previous work, while the deblurring quality is comparable. GPU implementation facilitates further speed-up, making our method fast enough for practical use.
Two-Phase Kernel Estimation for Robust Motion Deblurring
"... Abstract. We discuss a few new motion deblurring problems that are significant to kernel estimation and non-blind deconvolution. We found that strong edges do not always profit kernel estimation, but instead under certain circumstance degrade it. This finding leads to a new metric to measure the use ..."
Abstract
-
Cited by 92 (4 self)
- Add to MetaCart
(Show Context)
Abstract. We discuss a few new motion deblurring problems that are significant to kernel estimation and non-blind deconvolution. We found that strong edges do not always profit kernel estimation, but instead under certain circumstance degrade it. This finding leads to a new metric to measure the usefulness of image edges in motion deblurring and a gradient selection process to mitigate their possible adverse effect. We also propose an efficient and high-quality kernel estimation method based on using the spatial prior and the iterative support detection (ISD) kernel refinement, which avoids hard threshold of the kernel elements to enforce sparsity. We employ the TV-ℓ1 deconvolution model, solved with a new variable substitution scheme to robustly suppress noise. 1
Non-uniform deblurring for shaken images
- In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010. 8. Image taken with a Canon 1D Mark III, at 35mm f/4.5. Images
"... Blur from camera shake is mostly due to the 3D rotation of the camera, resulting in a blur kernel that can be significantly non-uniform across the image. However, most current deblurring methods model the observed image as a convolution of a sharp image with a uniform blur kernel. We propose a new p ..."
Abstract
-
Cited by 75 (4 self)
- Add to MetaCart
(Show Context)
Blur from camera shake is mostly due to the 3D rotation of the camera, resulting in a blur kernel that can be significantly non-uniform across the image. However, most current deblurring methods model the observed image as a convolution of a sharp image with a uniform blur kernel. We propose a new parametrized geometric model of the blurring process in terms of the rotational velocity of the camera during exposure. We apply this model to two different algorithms for camera shake removal: the first one uses a single blurry image (blind deblurring), while the second one uses both a blurry image and a sharp but noisy image of the same scene. We show that our approach makes it possible to model and remove a wider class of blurs than previous approaches, including uniform blur as a special case, and demonstrate its effectiveness with experiments on real images. 1.
H.: Progressive inter-scale and intra-scale non-blind image deconvolution
- In ACM SIGGRAPH
, 2008
"... et al. 2006]), standard Richardson-Lucy (RL) [Lucy 1974] result, and our result. Abstract. Ringing is the most disturbing artifact in the image deconvolution. In this paper, we present a progressive inter-scale and intra-scale non-blind image deconvolution approach that significantly reduces ringing ..."
Abstract
-
Cited by 57 (2 self)
- Add to MetaCart
et al. 2006]), standard Richardson-Lucy (RL) [Lucy 1974] result, and our result. Abstract. Ringing is the most disturbing artifact in the image deconvolution. In this paper, we present a progressive inter-scale and intra-scale non-blind image deconvolution approach that significantly reduces ringing. Our approach is built on a novel edgepreserving deconvolution algorithm called bilateral Richardson-Lucy (BRL) which uses a large spatial support to handle large blur. We progressively recover the image from a coarse scale to a fine scale (inter-scale), and progressively restore image details within every scale (intra-scale). To perform the inter-scale deconvolution, we propose a joint bilateral Richardson-Lucy (JBRL) algorithm so that the recovered image in one scale can guide the deconvolution in the next scale. In each scale, we propose an iterative residual deconvolution to progressively recover image details. The experimental results show that our progressive deconvolution can produce images with very little ringing for large blur kernels. 1
Image/video deblurring using a hybrid camera
- In IEEE CVPR
, 2008
"... We propose a novel approach to reduce spatially varying motion blur using a hybrid camera system that simultaneously captures high-resolution video at a low-frame rate together with low-resolution video at a high-frame rate. Our work is inspired by Ben-Ezra and Nayar [3] who introduced the hybrid ca ..."
Abstract
-
Cited by 50 (6 self)
- Add to MetaCart
(Show Context)
We propose a novel approach to reduce spatially varying motion blur using a hybrid camera system that simultaneously captures high-resolution video at a low-frame rate together with low-resolution video at a high-frame rate. Our work is inspired by Ben-Ezra and Nayar [3] who introduced the hybrid camera idea for correcting global motion blur for a single still image. We broaden the scope of the problem to address spatially varying blur as well as video imagery. We also reformulate the correction process to use more information available in the hybrid camera system, as well as iteratively refine spatially varying motion extracted from the low-resolution high-speed camera. We demonstrate that our approach achieves superior results over existing work and can be extended to deblurring of moving objects. 1.
Single image deblurring using motion density functions
- In Proceedings of European Conference on Computer Vision
, 2010
"... Abstract. We present a novel single image deblurring method to estimate spatially non-uniform blur that results from camera shake. We use existing spatially invariant deconvolution methods in a local and robust way to compute initial estimates of the latent image. The camera motion is represented as ..."
Abstract
-
Cited by 50 (2 self)
- Add to MetaCart
(Show Context)
Abstract. We present a novel single image deblurring method to estimate spatially non-uniform blur that results from camera shake. We use existing spatially invariant deconvolution methods in a local and robust way to compute initial estimates of the latent image. The camera motion is represented as a Motion Density Function (MDF) which records the fraction of time spent in each discretized portion of the space of all possible camera poses. Spatially varying blur kernels are derived directly from the MDF. We show that 6D camera motion is well approximated by 3 degrees of motion (in-plane translation and rotation) and analyze the scope of this approximation. We present results on both synthetic and captured data. Our system out-performs current approaches which make the assumption of spatially invariant blur. 1
Motion from blur
- In Proc. Conf. Computer Vision and Pattern Recognition
, 2008
"... Motion blur retains some information about motion, based on which motion may be recovered from blurred images. This is a difficult problem, as the situations of motion blur can be quite complicated, such as they may be spacevariant, nonlinear, and local. This paper addresses a very challenging probl ..."
Abstract
-
Cited by 49 (2 self)
- Add to MetaCart
(Show Context)
Motion blur retains some information about motion, based on which motion may be recovered from blurred images. This is a difficult problem, as the situations of motion blur can be quite complicated, such as they may be spacevariant, nonlinear, and local. This paper addresses a very challenging problem: can we recover motion blindly from a single motion-blurred image? A major contribution of this paper is a new finding of an elegant motion blur constraint. Exhibiting a very similar mathematical form as the optical flow constraint, this linear constraint applies locally to pixels in the image. Therefore, a number of challenging problems can be unified, including estimating global affine motion blur, estimating global rotational motion blur, estimating and segmenting multiple motion blur, and estimating nonparametric motion blur field. Extensive experiments on blur estimation and image deblurring on both synthesized and real data demonstrate the accuracy and general applicability of the proposed approach. 1.
Robust dual motion deblurring
- Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, 2008
"... This paper presents a robust algorithm to deblur two consecutively captured blurred photos from camera shaking. Previous dual motion deblurring algorithms succeeded in small and simple motion blur and are very sensitive to noise. We develop a robust feedback algorithm to perform iteratively kernel e ..."
Abstract
-
Cited by 46 (0 self)
- Add to MetaCart
(Show Context)
This paper presents a robust algorithm to deblur two consecutively captured blurred photos from camera shaking. Previous dual motion deblurring algorithms succeeded in small and simple motion blur and are very sensitive to noise. We develop a robust feedback algorithm to perform iteratively kernel estimation and image deblurring. In kernel estimation, the stability and capability of the algorithm is greatly improved by incorporating a robust cost function and a set of kernel priors. The robust cost function serves to reject outliers and noise, while kernel priors, including sparseness and continuity, remove ambiguity and maintain kernel shape. In deblurring, we propose a novel and robust approach which takes two blurred images as input to infer the clear image. The deblurred image is then used as feedback to refine kernel estimation. Our method can successfully estimate large and complex motion blurs which cannot be handled by previous dual or single image motion deblurring algorithms. The results are shown to be significantly better than those of previous approaches. 1.