Results 1  10
of
53
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanulysis.)
Quantum complexity theory
 in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM
, 1993
"... Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This constructi ..."
Abstract

Cited by 574 (5 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we study quantum computation from a complexity theoretic viewpoint. Our first result is the existence of an efficient universal quantum Turing machine in Deutsch’s model of a quantum Turing machine (QTM) [Proc. Roy. Soc. London Ser. A, 400 (1985), pp. 97–117]. This construction is substantially more complicated than the corresponding construction for classical Turing machines (TMs); in fact, even simple primitives such as looping, branching, and composition are not straightforward in the context of quantum Turing machines. We establish how these familiar primitives can be implemented and introduce some new, purely quantum mechanical primitives, such as changing the computational basis and carrying out an arbitrary unitary transformation of polynomially bounded dimension. We also consider the precision to which the transition amplitudes of a quantum Turing machine need to be specified. We prove that O(log T) bits of precision suffice to support a T step computation. This justifies the claim that the quantum Turing machine model should be regarded as a discrete model of computation and not an analog one. We give the first formal evidence that quantum Turing machines violate the modern (complexity theoretic) formulation of the Church–Turing thesis. We show the existence of a problem, relative to an oracle, that can be solved in polynomial time on a quantum Turing machine, but requires superpolynomial time on a boundederror probabilistic Turing machine, and thus not in the class BPP. The class BQP of languages that are efficiently decidable (with small errorprobability) on a quantum Turing machine satisfies BPP ⊆ BQP ⊆ P ♯P. Therefore, there is no possibility of giving a mathematical proof that quantum Turing machines are more powerful than classical probabilistic Turing machines (in the unrelativized setting) unless there is a major breakthrough in complexity theory.
Strengths and weaknesses of quantum computing
, 1996
"... Recently a great deal of attention has focused on quantum computation following a sequence of results [4, 16, 15] suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor’s result that factoring and the extraction of discrete logarithms are both solv ..."
Abstract

Cited by 381 (10 self)
 Add to MetaCart
Recently a great deal of attention has focused on quantum computation following a sequence of results [4, 16, 15] suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor’s result that factoring and the extraction of discrete logarithms are both solvable in quantum polynomial time, it is natural to ask whether all of NP can be efficiently solved in quantum polynomial time. In this paper, we address this question by proving that relative to an oracle chosen uniformly at random, with probability 1, the class NP cannot be solved on a quantum Turing machine in time o(2 n/2). We also show that relative to a permutation oracle chosen uniformly at random, with probability 1, the class NP ∩ co–NP cannot be solved on a quantum Turing machine in time o(2 n/3). The former bound is tight since recent work of Grover [13] shows how to accept the class NP relative to any oracle on a quantum computer in time O(2 n/2).
Quantum Circuit Complexity
, 1993
"... We study a complexity model of quantum circuits analogous to the standard (acyclic) Boolean circuit model. It is shown that any function computable in polynomial time by a quantum Turing machine has a polynomialsize quantum circuit. This result also enables us to construct a universal quantum compu ..."
Abstract

Cited by 320 (1 self)
 Add to MetaCart
We study a complexity model of quantum circuits analogous to the standard (acyclic) Boolean circuit model. It is shown that any function computable in polynomial time by a quantum Turing machine has a polynomialsize quantum circuit. This result also enables us to construct a universal quantum computer which can simulate, with a polynomial factor slowdown, a broader class of quantum machines than that considered by Bernstein and Vazirani [BV93], thus answering an open question raised in [BV93]. We also develop a theory of quantum communication complexity, and use it as a tool to prove that the majority function does not have a linearsize quantum formula. Keywords. Boolean circuit complexity, communication complexity, quantum communication complexity, quantum computation AMS subject classifications. 68Q05, 68Q15 1 This research was supported in part by the National Science Foundation under grant CCR9301430. 1 Introduction One of the most intriguing questions in computation theroy ...
Oracle quantum computing
 Brassard & U.Vazirani, Strengths and weaknesses of quantum computing
, 1994
"... \Because nature isn't classical, dammit..." ..."
Abstract

Cited by 115 (8 self)
 Add to MetaCart
\Because nature isn't classical, dammit..."
On the Power of Quantum Finite State Automata
 Proceedings of the 38th IEEE Conference on Foundations of Computer Science
, 1997
"... In this paper, we introduce 1way and 2way quantum finite state automata (1qfa's and 2qfa's), which are the quantum analogues of deterministic, nondeterministic and probabilistic 1way and 2way finite state automata. We prove the following facts regarding 2qfa's. 1. For any ffl ? 0, ..."
Abstract

Cited by 105 (5 self)
 Add to MetaCart
(Show Context)
In this paper, we introduce 1way and 2way quantum finite state automata (1qfa's and 2qfa's), which are the quantum analogues of deterministic, nondeterministic and probabilistic 1way and 2way finite state automata. We prove the following facts regarding 2qfa's. 1. For any ffl ? 0, there is a 2qfa M which recognizes the nonregular language L = fa m b m j m 1g with (onesided) error bounded by ffl, and which halts in linear time. Specifically, M accepts any string in L with probability 1 and rejects any string not in L with probability at least 1 \Gamma ffl. 2. For every regular language L, there is a reversible (and hence quantum) 2way finite state automaton which recognizes L and which runs in linear time. In fact, it is possible to define 2qfa's which recognize the noncontextfree language fa m b m c m jm 1g, based on the same technique used for 1. Consequently, the class of languages recognized by linear time, bounded error 2qfa's properly includes the regular l...
An exact quantum polynomialtime algorithm for Simon's problem
 IN PROCEEDINGS OF THE 5TH ISRAELI SYMPOSIUM ON THEORY OF COMPUTING AND SYSTEMS (ISTCS'97
, 1997
"... We investigate the power of quantum computers when they are required to return an answer that is guaranteed to be correct after a time that is upperbounded by a polynomial in the worst case. We show that a natural generalization of Simon’s problem can be solved in this way, whereas previous algorit ..."
Abstract

Cited by 96 (10 self)
 Add to MetaCart
(Show Context)
We investigate the power of quantum computers when they are required to return an answer that is guaranteed to be correct after a time that is upperbounded by a polynomial in the worst case. We show that a natural generalization of Simon’s problem can be solved in this way, whereas previous algorithms required quantum polynomial time in the expected sense only, without upper bounds on the worstcase running time. This is achieved by generalizing both Simon’s and Grover’s algorithms and combining them in a novel way. It follows that there is a decision problem that can be solved in exact quantum polynomial time, which would require expected exponential time on any classical boundederror probabilistic computer if the data is supplied as a black box.
Efficient Quantum Transforms
"... Quantum mechanics requires the operation of quantum computers to be unitary, and thus makes it important to have general techniques for developing fast quantum algorithms for computing unitary transforms. A quantum routine for computing a generalized Kronecker product is given. Applications include ..."
Abstract

Cited by 38 (0 self)
 Add to MetaCart
(Show Context)
Quantum mechanics requires the operation of quantum computers to be unitary, and thus makes it important to have general techniques for developing fast quantum algorithms for computing unitary transforms. A quantum routine for computing a generalized Kronecker product is given. Applications include redevelopment of the networks for computing the WalshHadamard and the quantum Fourier transform. New networks for two wavelet transforms are given. Quantum computation of Fourier transforms for nonAbelian groups is defined. A slightly relaxed definition is shown to simplify the analysis and the networks that computes the transforms. Efficient networks for computing such transforms for a class of metacyclic groups are introduced. A novel network for computing a Fourier transform for a group used in quantum errorcorrection is also given. 1