Results 1 - 10
of
122
Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification
"... Robust low-level image features have been proven to be effective representations for a variety of visual recognition tasks such as object recognition and scene classification; but pixels, or even local image patches, carry little semantic meanings. For high level visual tasks, such low-level image r ..."
Abstract
-
Cited by 207 (6 self)
- Add to MetaCart
(Show Context)
Robust low-level image features have been proven to be effective representations for a variety of visual recognition tasks such as object recognition and scene classification; but pixels, or even local image patches, carry little semantic meanings. For high level visual tasks, such low-level image representations are potentially not enough. In this paper, we propose a high-level image representation, called the Object Bank, where an image is represented as a scale-invariant response map of a large number of pre-trained generic object detectors, blind to the testing dataset or visual task. Leveraging on the Object Bank representation, superior performances on high level visual recognition tasks can be achieved with simple off-the-shelf classifiers such as logistic regression and linear SVM. Sparsity algorithms make our representation more efficient and scalable for large scene datasets, and reveal semantically meaningful feature patterns. 1
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
"... We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be repurposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks an ..."
Abstract
-
Cited by 203 (22 self)
- Add to MetaCart
We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be repurposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks and there may be insufficient labeled or unlabeled data to conventionally train or adapt a deep architecture to the new tasks. We investigate and visualize the semantic clustering of deep convolutional features with respect to a variety of such tasks, including scene recognition, domain adaptation, and fine-grained recognition challenges. We compare the efficacy of relying on various network levels to define a fixed feature, and report novel results that significantly outperform the state-of-the-art on several important vision challenges. We are releasing DeCAF, an open-source implementation of these deep convolutional activation features, along with all associated network parameters to enable vision researchers to be able to conduct experimentation with deep representations across a range of visual concept learning paradigms. 1.
Iterative quantization: A procrustean approach to learning binary codes
- In Proc. of the IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR
, 2011
"... This paper addresses the problem of learning similaritypreserving binary codes for efficient retrieval in large-scale image collections. We propose a simple and efficient alternating minimization scheme for finding a rotation of zerocentered data so as to minimize the quantization error of mapping t ..."
Abstract
-
Cited by 157 (6 self)
- Add to MetaCart
This paper addresses the problem of learning similaritypreserving binary codes for efficient retrieval in large-scale image collections. We propose a simple and efficient alternating minimization scheme for finding a rotation of zerocentered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube. This method, dubbed iterative quantization (ITQ), has connections to multi-class spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). Our experiments show that the resulting binary coding schemes decisively outperform several other state-of-the-art methods. 1.
Unsupervised discovery of mid-level discriminative patches. arXiv:1205.3137 [cs.CV
, 2012
"... Abstract. The goal of this paper is to discover a set of discriminative patches which can serve as a fully unsupervised mid-level visual representation. The desired patches need to satisfy two requirements: 1) to be representative, they need to occur frequently enough in the visual world; 2) to be d ..."
Abstract
-
Cited by 79 (4 self)
- Add to MetaCart
(Show Context)
Abstract. The goal of this paper is to discover a set of discriminative patches which can serve as a fully unsupervised mid-level visual representation. The desired patches need to satisfy two requirements: 1) to be representative, they need to occur frequently enough in the visual world; 2) to be discriminative, they need to be different enough from the rest of the visual world. The patches could correspond to parts, objects, “visual phrases”, etc. but are not restricted to be any one of them. We pose this as an unsupervised discriminative clustering problem on a huge dataset of image patches. We use an iterative procedure which alternates between clustering and training discriminative classifiers, while applying careful cross-validation at each step to prevent overfitting. The paper experimentally demonstrates the effectiveness of discriminative patches as an unsupervised mid-level visual representation, suggesting that it could be used in place of visual words for many tasks. Furthermore, discriminative patches can also be used in a supervised regime, such as scene classification, where they demonstrate state-of-the-art performance on the MIT Indoor-67 dataset. 1
Exploiting weakly-labeled Web images to improve object classification: a domain adaptation approach
"... Most current image categorization methods require large collections of manually annotated training examples to learn accurate visual recognition models. The time-consuming human labeling effort effectively limits these approaches to recognition problems involving a small number of different object c ..."
Abstract
-
Cited by 61 (0 self)
- Add to MetaCart
(Show Context)
Most current image categorization methods require large collections of manually annotated training examples to learn accurate visual recognition models. The time-consuming human labeling effort effectively limits these approaches to recognition problems involving a small number of different object classes. In order to address this shortcoming, in recent years several authors have proposed to learn object classifiers from weakly-labeled Internet images, such as photos retrieved by keyword-based image search engines. While this strategy eliminates the need for human supervision, the recognition accuracies of these methods are considerably lower than those obtained with fully-supervised approaches, because of the noisy nature of the labels associated to Web data. In this paper we investigate and compare methods that learn image classifiers by combining very few manually annotated examples (e.g., 1-10 images per class) and a large number of weakly-labeled Web photos retrieved using keyword-based image search. We cast this as a domain adaptation problem: given a few stronglylabeled examples in a target domain (the manually annotated examples) and many source domain examples (the weakly-labeled Web photos), learn classifiers yielding small generalization error on the target domain. Our experiments demonstrate that, for the same number of strongly-labeled examples, our domain adaptation approach produces significant recognition rate improvements over the best published results (e.g., 65 % better when using 5 labeled training examples per class) and that our classifiers are one order of magnitude faster to learn and to evaluate than the best competing method, despite our use of large weakly-labeled data sets. 1
Good Practice in Large-Scale Learning for Image Classification
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI)
, 2013
"... We benchmark several SVM objective functions for large-scale image classification. We consider one-vs-rest, multi-class, ranking, and weighted approximate ranking SVMs. A comparison of online and batch methods for optimizing the objectives shows that online methods perform as well as batch methods i ..."
Abstract
-
Cited by 53 (6 self)
- Add to MetaCart
(Show Context)
We benchmark several SVM objective functions for large-scale image classification. We consider one-vs-rest, multi-class, ranking, and weighted approximate ranking SVMs. A comparison of online and batch methods for optimizing the objectives shows that online methods perform as well as batch methods in terms of classification accuracy, but with a significant gain in training speed. Using stochastic gradient descent, we can scale the training to millions of images and thousands of classes. Our experimental evaluation shows that ranking-based algorithms do not outperform the one-vs-rest strategy when a large number of training examples are used. Furthermore, the gap in accuracy between the different algorithms shrinks as the dimension of the features increases. We also show that learning through cross-validation the optimal rebalancing of positive and negative examples can result in a significant improvement for the one-vs-rest strategy. Finally, early stopping can be used as an effective regularization strategy when training with online algorithms. Following these “good practices”, we were able to improve the state-of-the-art on a large subset of 10K classes and 9M images of ImageNet from 16.7 % Top-1 accuracy to 19.1%.
Hierarchical semantic indexing for large scale image retrieval
- In CVPR
, 2011
"... This paper addresses the problem of similar image retrieval, especially in the setting of large-scale datasets with millions to billions of images. The core novel contribution is an approach that can exploit prior knowledge of a semantic hierarchy. When semantic labels and a hierarchy relating them ..."
Abstract
-
Cited by 44 (3 self)
- Add to MetaCart
(Show Context)
This paper addresses the problem of similar image retrieval, especially in the setting of large-scale datasets with millions to billions of images. The core novel contribution is an approach that can exploit prior knowledge of a semantic hierarchy. When semantic labels and a hierarchy relating them are available during training, significant improvements over the state of the art in similar image retrieval are attained. While some of this advantage comes from the ability to use additional information, experiments exploring a special case where no additional data is provided, show the new approach can still outperform OASIS [6], the current state of the art for similarity learning. Exploiting hierarchical relationships is most important for larger scale problems, where scalability becomes crucial. The proposed learning approach is fundamentally parallelizable and as a result scales more easily than previous work. An additional contribution is a novel hashing scheme (for bilinear similarity on vectors of probabilities, optionally taking into account hierarchy) that is able to reduce the computational cost of retrieval. Experiments are performed on Caltech256 and the larger ImageNet dataset. 1.
Attribute Discovery via Predictable Discriminative Binary Codes
- In ECCV
"... Abstract. We present images with binary codes in a way that balances discrimination and learnability of the codes. In our method, each image claims its own code in a way that maintains discrimination while being predictable from visual data. Category memberships are usually good proxies for visual s ..."
Abstract
-
Cited by 39 (7 self)
- Add to MetaCart
(Show Context)
Abstract. We present images with binary codes in a way that balances discrimination and learnability of the codes. In our method, each image claims its own code in a way that maintains discrimination while being predictable from visual data. Category memberships are usually good proxies for visual similarity but should not be enforced as a hard constraint. Our method learns codes that maximize separability of categories unless there is strong visual evidence against it. Simple linear SVMs can achieve state-of-the-art results with our short codes. In fact, our method produces state-of-the-art results on Caltech256 with only 128dimensional bit vectors and outperforms state of the art by using longer codes. We also evaluate our method on ImageNet and show that our method outperforms state-of-the-art binary code methods on this large scale dataset. Lastly, our codes can discover a discriminative set of attributes. 1
Learning Image Similarity from Flickr Groups Using Stochastic Intersection Kernel Machines
"... Measuring image similarity is a central topic in computer vision. In this paper, we learn similarity from Flickr groups and use it to organize photos. Two images are similar if they are likely to belong to the same Flickr groups. Our approach is enabled by a fast Stochastic Intersection Kernel MAchi ..."
Abstract
-
Cited by 38 (1 self)
- Add to MetaCart
Measuring image similarity is a central topic in computer vision. In this paper, we learn similarity from Flickr groups and use it to organize photos. Two images are similar if they are likely to belong to the same Flickr groups. Our approach is enabled by a fast Stochastic Intersection Kernel MAchine (SIKMA) training algorithm, which we propose. This proposed training method will be useful for many vision problems, as it can produce a classifier that is more accurate than a linear classifier, trained on tens of thousands of examples in two minutes. The experimental results show our approach performs better on image matching, retrieval, and classification than using conventional visual features. 1.
Picodes: Learning a compact code for novel-category recognition
- in NIPS, 2011
"... Abstract We introduce PICODES: a very compact image descriptor which nevertheless allows high performance on object category recognition. In particular, we address novel-category recognition: the task of defining indexing structures and image representations which enable a large collection of image ..."
Abstract
-
Cited by 33 (2 self)
- Add to MetaCart
(Show Context)
Abstract We introduce PICODES: a very compact image descriptor which nevertheless allows high performance on object category recognition. In particular, we address novel-category recognition: the task of defining indexing structures and image representations which enable a large collection of images to be searched for an object category, where the training images defining the category are supplied at query time. We explicitly learn descriptors of a target length (from as small as 16 bytes per image) which have good object-recognition performance. In contrast to previous work in the domain of object recognition, we do not choose an arbitrary intermediate representation, but explicitly learn short codes. In contrast to previous approaches to learn compact codes, we optimize explicitly for (an upper bound on) classification performance. Optimization directly for binary features is difficult and nonconvex, but we present an alternation scheme and convex upper bound which demonstrate excellent performance in practice. PICODES of 256 bytes match the accuracy of the current best known classifier for the Caltech256 benchmark, but they decrease the database storage size by a factor of 100 and speed-up the training and testing of novel classes by orders of magnitude.