Results 1  10
of
25
An EMO Algorithm Using the Hypervolume Measure as Selection Criterion
 2005 Int’l Conference, March 2005
, 2005
"... The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is selfevident. A steadystate EMOA will be devised, that combines concepts of nondominated sor ..."
Abstract

Cited by 67 (10 self)
 Add to MetaCart
(Show Context)
The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is selfevident. A steadystate EMOA will be devised, that combines concepts of nondominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well distributed set of solutions with bounded size thereby focussing on interesting regions of the Pareto front(s). By means of standard benchmark problems the algorithm will be compared to other well established EMOA. The results show that our new algorithm achieves good convergence to the Pareto front and outperforms standard methods in the hypervolume covered.
The hypervolume indicator revisited: On the design of paretocompliant indicators via weighted integration
 In International Conference on Evolutionary MultiCriterion Optimization (EMO 2007
, 2007
"... Abstract. The design of quality measures for approximations of the Paretooptimal set is of high importance not only for the performance assessment, but also for the construction of multiobjective optimizers. Various measures have been proposed in the literature with the intention to capture differe ..."
Abstract

Cited by 59 (14 self)
 Add to MetaCart
(Show Context)
Abstract. The design of quality measures for approximations of the Paretooptimal set is of high importance not only for the performance assessment, but also for the construction of multiobjective optimizers. Various measures have been proposed in the literature with the intention to capture different preferences of the decision maker. A quality measure that possesses a highly desirable feature is the hypervolume measure: whenever one approximation completely dominates another approximation, the hypervolume of the former will be greater than the hypervolume of the latter. Unfortunately, this measure—as any measure inducing a total order on the search space—is biased, in particular towards convex, inner portions of the objective space. Thus, an open question in this context is whether it can be modified such that other preferences such as a bias towards extreme solutions can be obtained. This paper proposes a methodology for quality measure design based on the hypervolume measure and demonstrates its usefulness for three types of preferences. 1
Multiplicative Approximations and the Hypervolume Indicator
"... Indicatorbased algorithms have become a very popular approach to solve multiobjective optimization problems. In this paper, we contribute to the theoretical understanding of algorithms maximizing the hypervolume for a given problem by distributing µ points on the Pareto front. We examine this comm ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
(Show Context)
Indicatorbased algorithms have become a very popular approach to solve multiobjective optimization problems. In this paper, we contribute to the theoretical understanding of algorithms maximizing the hypervolume for a given problem by distributing µ points on the Pareto front. We examine this common approach with respect to the achieved multiplicative approximation ratio for a given multiobjective problem and relate it to a set of µ points on the Pareto front that achieves the best possible approximation ratio. For the class of linear fronts and a class of concave fronts, we prove that the hypervolume gives the best possible approximation ratio. In addition, we examine Pareto fronts of different shapes by numerical calculations and show that the approximation computed by the hypervolume may differ from the optimal approximation ratio.
Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization: Methods and Analysis
, 2006
"... ..."
The maximum hypervolume set yields nearoptimal approximation
 IN PROC. 12TH ANNUAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION (GECCO ’10
, 2010
"... In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the do ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the dominated portion of the objective space. Though the hypervolume indicator is very popular, it has not been shown that maximizing the hypervolume indicator is indeed equivalent to the overall objective of finding a good approximation of the Pareto front. To address this question, we compare the optimal approximation factor with the approximation factor achieved by sets maximizing the hypervolume indicator. We bound the optimal approximation factor of n points by 1 + Θ(1/n) for arbitrary Pareto fronts. Furthermore, we prove that the same asymptotic approximation ratio is achieved by sets of n points that maximize the hypervolume indicator. This shows that the speed of convergence of the approximation ratio achieved by maximizing the hypervolume indicator is asymptotically optimal. This implies that for large values of n, sets maximizing the hypervolume indicator quickly approach the optimal approximation ratio. Moreover, our bounds show that also for relatively small values of n, sets maximizing the hypervolume indicator achieve a nearoptimal approximation ratio.
Don’t be greedy when calculating hypervolume contributions
 Proceedings of the 10th International Workshop on Foundations of Genetic Algorithms (FOGA 2009
, 2009
"... contributions ..."
(Show Context)
An efficient algorithm for computing hypervolume contributions
 Evolutionary Computation
"... The hypervolume indicator serves as a sorting criterion in many recent multiobjective evolutionary algorithms (MOEAs). Typical algorithms remove the solution with the smallest loss with respect to the dominated hypervolume from the population. We present a new algorithm which determines for a popul ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
(Show Context)
The hypervolume indicator serves as a sorting criterion in many recent multiobjective evolutionary algorithms (MOEAs). Typical algorithms remove the solution with the smallest loss with respect to the dominated hypervolume from the population. We present a new algorithm which determines for a population of size n with d objectives, a solution with minimal hypervolume contribution in time O(n d/2 log n) for d> 2. This improves all previously published algorithms by a factor of n for all d> 3 and by a factor of √ n for d = 3. We also analyze hypervolume indicator based optimization algorithms which remove λ> 1 solutions from a population of size n = µ + λ. We show that there are populations such that the hypervolume contribution of iteratively chosen λ solutions is much larger than the hypervolume contribution of an optimal set of λ solutions. Selecting the optimal set of λ solutions implies calculating () n conventional hypervolume conµ tributions, which is considered to be computationally too expensive. We present the first hypervolume algorithm which calculates directly the contribution of every set of λ solutions. This gives an additive term of () n in the runtime of the calculation inµ stead of a multiplicative factor of ()
Hypervolumebased Multiobjective Optimization: Theoretical Foundations and Practical Implications
 THEORETICAL COMPUTER SCIENCE
, 2011
"... In recent years, indicatorbased evolutionary algorithms, allowing to implicitly incorporate user preferences into the search, have become widely used in practice to solve multiobjective optimization problems. When using this type of methods, the optimization goal changes from optimizing a set of ob ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
In recent years, indicatorbased evolutionary algorithms, allowing to implicitly incorporate user preferences into the search, have become widely used in practice to solve multiobjective optimization problems. When using this type of methods, the optimization goal changes from optimizing a set of objective functions simultaneously to the singleobjective optimization goal of finding a set of µ points that maximizes the underlying indicator. Understanding the difference between these two optimization goals is fundamental when applying indicatorbased algorithms in practice. On the one hand, a characterization of the inherent optimization goal of different indicators allows the user to choose the indicator that meets her preferences. On the other hand, knowledge about the sets of µ points with optimal indicator values—socalled optimal µdistributions—can be used in performance assessment whenever the indicator is used as a performance criterion. However, theoretical studies on indicatorbased optimization are sparse. One of the most popular indicators is the weighted hypervolume indicator. It allows to guide the search towards userdefined objective space regions and at the same time has the property of being a refinement of the Pareto dominance relation with the result that maximizing the indicator results in Paretooptimal solutions only. In previous work, we theoretically investigated the unweighted hypervolume indicator in terms of a characterization of optimal µdistributions and the influence of the hypervolume’s reference point for general biobjective optimization problems. In this
A fast incremental hypervolume algorithm
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 2008
"... When hypervolume is used as part of the selection or archiving process in a multiobjective evolutionary algorithm, it is necessary to determine which solutions contribute the least hypervolume to a front. Little focus has been placed on algorithms that quickly determine these solutions and there a ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
When hypervolume is used as part of the selection or archiving process in a multiobjective evolutionary algorithm, it is necessary to determine which solutions contribute the least hypervolume to a front. Little focus has been placed on algorithms that quickly determine these solutions and there are no fast algorithms designed specifically for this purpose. We describe an algorithm, IHSO, that quickly determines a solution’s contribution. Furthermore, we describe and analyse heuristics that reorder objectives to minimize the work required for IHSO to calculate a solution’s contribution. Lastly, we describe and analyze search techniques that reduce the amount of work required for solutions other than the least contributing one. Combined, these techniques allow multiobjective evolutionary algorithms to calculate hypervolume inline in increasingly complex and large fronts in many objectives.
Tight bounds for the approximation ratio of the hypervolume indicator
 In Proc. 11th International Conference 29 Problem Solving from Nature (PPSN XI), volume 6238 of LNCS
, 2010
"... Abstract The hypervolume indicator is widely used to guide the search and to evaluate the performance of evolutionary multiobjective optimization algorithms. It measures the volume of the dominated portion of the objective space which is considered to give a good approximation of the Pareto front. ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
(Show Context)
Abstract The hypervolume indicator is widely used to guide the search and to evaluate the performance of evolutionary multiobjective optimization algorithms. It measures the volume of the dominated portion of the objective space which is considered to give a good approximation of the Pareto front. There is surprisingly little theoretically known about the quality of this approximation. We examine the multiplicative approximation ratio achieved by twodimensional sets maximizing the hypervolume indicator and prove that it deviates significantly from the optimal approximation ratio. This provable gap is even exponential in the ratio between the largest and the smallest value of the front. We also examine the additive approximation ratio of the hypervolume indicator and prove that it achieves the optimal additive approximation ratio apart from a small factor � n/(n − 2), where n is the size of the population. Hence the hypervolume indicator can be used to achieve a very good additive but not a good multiplicative approximation of a Pareto front. 1