Results

**1 - 1**of**1**### Self-Stabilizing Repeated Balls-into-Bins

"... Abstract We study the following synchronous process that we call repeated balls-into-bins. The process is started by assigning n balls to n bins in an arbitrary way. Then, in every subsequent round, one ball is chosen according to some fixed strategy (random, FIFO, etc) from each non-empty bin, and ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract We study the following synchronous process that we call repeated balls-into-bins. The process is started by assigning n balls to n bins in an arbitrary way. Then, in every subsequent round, one ball is chosen according to some fixed strategy (random, FIFO, etc) from each non-empty bin, and re-assigned to one of the n bins uniformly at random. This process corresponds to a non-reversible Markov chain and our aim is to study its self-stabilization properties with respect to the maximum (bin) load and some related performance measures. We define a configuration (i.e., a state) legitimate if its maximum load is Oplog nq. We first prove that, starting from any legitimate configuration, the process will only take on legitimate configurations over a period of length bounded by any polynomial in n, with high probability (w.h.p.). Further we prove that, starting from any configuration, the process converges to a legitimate configuration in linear time, w.h.p. This implies that the process is self-stabilizing w.h.p. and, moreover, that every ball traverses all bins in Opn log 2 nq rounds, w.h.p. The latter result can also be interpreted as an almost tight bound on the cover time for the problem of parallel resource assignment in the complete graph.