Results 11  20
of
1,647
The exact security of digital signatures  How to sign with RSA and Rabin
, 1996
"... We describe an RSAbased signing scheme called PSS which combines essentially optimal efficiency with attractive security properties. Signing takes one RSA decryption plus some hashing, ..."
Abstract

Cited by 386 (17 self)
 Add to MetaCart
We describe an RSAbased signing scheme called PSS which combines essentially optimal efficiency with attractive security properties. Signing takes one RSA decryption plus some hashing,
Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption)
, 2000
"... Two distinct, rigorous views of cryptography have developed over the years, in two mostly separate communities. One of the views relies on a simple but effective formal approach; the other, on a detailed computational model that considers issues of complexity and probability. ..."
Abstract

Cited by 378 (11 self)
 Add to MetaCart
Two distinct, rigorous views of cryptography have developed over the years, in two mostly separate communities. One of the views relies on a simple but effective formal approach; the other, on a detailed computational model that considers issues of complexity and probability.
Security Arguments for Digital Signatures and Blind Signatures
 JOURNAL OF CRYPTOLOGY
, 2000
"... Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the ..."
Abstract

Cited by 375 (39 self)
 Add to MetaCart
Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the
On the (im)possibility of obfuscating programs
 Lecture Notes in Computer Science
, 2001
"... Informally, an obfuscator O is an (efficient, probabilistic) “compiler ” that takes as input a program (or circuit) P and produces a new program O(P) that has the same functionality as P yet is “unintelligible ” in some sense. Obfuscators, if they exist, would have a wide variety of cryptographic an ..."
Abstract

Cited by 348 (24 self)
 Add to MetaCart
(Show Context)
Informally, an obfuscator O is an (efficient, probabilistic) “compiler ” that takes as input a program (or circuit) P and produces a new program O(P) that has the same functionality as P yet is “unintelligible ” in some sense. Obfuscators, if they exist, would have a wide variety of cryptographic and complexitytheoretic applications, ranging from software protection to homomorphic encryption to complexitytheoretic analogues of Rice’s theorem. Most of these applications are based on an interpretation of the “unintelligibility ” condition in obfuscation as meaning that O(P) is a “virtual black box, ” in the sense that anything one can efficiently compute given O(P), one could also efficiently compute given oracle access to P. In this work, we initiate a theoretical investigation of obfuscation. Our main result is that, even under very weak formalizations of the above intuition, obfuscation is impossible. We prove this by constructing a family of efficient programs P that are unobfuscatable in the sense that (a) given any efficient program P ′ that computes the same function as a program P ∈ P, the “source code ” P can be efficiently reconstructed, yet (b) given oracle access to a (randomly selected) program P ∈ P, no efficient algorithm can reconstruct P (or even distinguish a certain bit in the code from random) except with negligible probability. We extend our impossibility result in a number of ways, including even obfuscators that (a) are not necessarily computable in polynomial time, (b) only approximately preserve the functionality, and (c) only need to work for very restricted models of computation (TC 0). We also rule out several potential applications of obfuscators, by constructing “unobfuscatable” signature schemes, encryption schemes, and pseudorandom function families.
Efficient Group Signature Schemes for Large Groups (Extended Abstract)
, 1997
"... A group signature scheme allows members of a group to sign messages on the group's behalf such that the resulting signature does not reveal their identity. Only a designated group manager is able to identify the group member who issued a given signature. Previously proposed realizations of grou ..."
Abstract

Cited by 314 (35 self)
 Add to MetaCart
A group signature scheme allows members of a group to sign messages on the group's behalf such that the resulting signature does not reveal their identity. Only a designated group manager is able to identify the group member who issued a given signature. Previously proposed realizations of group signature schemes have the undesirable property that the length of the public key is linear in the size of the group. In this paper we propose the first group signature scheme whose public key and signatures have length independent of the number of group members and which can therefore also be used for large groups. Furthermore, the scheme allows the group manager to add new members to the group without modifying the public key. The realization is ba...
Provable Data Possession at Untrusted Stores
, 2007
"... We introduce a model for provable data possession (PDP) that allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. The model generates probabilistic proofs of possession by sampling random sets of blocks from the serv ..."
Abstract

Cited by 302 (9 self)
 Add to MetaCart
We introduce a model for provable data possession (PDP) that allows a client that has stored data at an untrusted server to verify that the server possesses the original data without retrieving it. The model generates probabilistic proofs of possession by sampling random sets of blocks from the server, which drastically reduces I/O costs. The client maintains a constant amount of metadata to verify the proof. The challenge/response protocol transmits a small, constant amount of data, which minimizes network communication. Thus, the PDP model for remote data checking supports large data sets in widelydistributed storage systems. We present two provablysecure PDP schemes that are more efficient than previous solutions, even when compared with schemes that achieve weaker guarantees. In particular, the overhead at the server is low (or even constant), as opposed to linear in the size of the data. Experiments using our implementation verify the practicality of PDP and reveal that the performance of PDP is bounded by disk I/O and not by cryptographic computation.
Optimistic fair exchange of digital signatures
 IEEE Journal on Selected Areas in Communications
, 1998
"... Abstract. We present a new protocol that allows two players to exchange digital signatures over the Internet in a fair way, so that either each player gets the other’s signature, or neither player does. The obvious application is where the signatures represent items of value, for example, an elect ..."
Abstract

Cited by 290 (10 self)
 Add to MetaCart
Abstract. We present a new protocol that allows two players to exchange digital signatures over the Internet in a fair way, so that either each player gets the other’s signature, or neither player does. The obvious application is where the signatures represent items of value, for example, an electronic check or airline ticket. The protocol can also be adapted to exchange encrypted data. The protocol relies on a trusted third party, but is “optimistic, ” in that the third party is only needed in cases where one player attempts to cheat or simply crashes. A key feature of our protocol is that a player can always force a timely and fair termination, without the cooperation of the other player. 1
ChosenCiphertext Security from IdentityBased Encryption. Adv
 in Cryptology — Eurocrypt 2004, LNCS
, 2004
"... We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a n ..."
Abstract

Cited by 280 (13 self)
 Add to MetaCart
We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a new paradigm for achieving CCAsecurity; this paradigm avoids “proofs of wellformedness ” that have been shown to underlie previous constructions. Second, instantiating our construction using known IBE constructions we obtain CCAsecure encryption schemes whose performance is competitive with the most efficient CCAsecure schemes to date. Our techniques extend naturally to give an efficient method for securing also IBE schemes (even hierarchical ones) against adaptive chosenciphertext attacks. Coupled with previous work, this gives the first efficient constructions of CCAsecure IBE schemes. 1
A practical and provably secure coalitionresistant group signature scheme
, 2000
"... A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed (only) by a designated entity. The interactive counterparts of group signatures are identity escrow schemes ..."
Abstract

Cited by 276 (29 self)
 Add to MetaCart
A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed (only) by a designated entity. The interactive counterparts of group signatures are identity escrow schemes or group identification scheme with revocable anonymity. This work introduces a new provably secure group signature and a companion identity escrow scheme that are significantly more efficient than the state of the art. In its interactive, identity escrow form, our scheme is proven secure and coalitionresistant under the strong RSA and the decisional DiffieHellman assumptions. The security of the noninteractive variant, i.e., the group signature scheme, relies additionally on the FiatShamir heuristic (also known as the random oracle model).