Results

**11 - 16**of**16**### The DoF of Network MIMO with Backhaul Delays

"... Abstract—We consider the problem of downlink precoding for Network (multi-cell) MIMO networks where Transmitters (TXs) are provided with imperfect Channel State Information (CSI). Specifically, each TX receives a delayed channel estimate with the delay being specific to each channel component. This ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract—We consider the problem of downlink precoding for Network (multi-cell) MIMO networks where Transmitters (TXs) are provided with imperfect Channel State Information (CSI). Specifically, each TX receives a delayed channel estimate with the delay being specific to each channel component. This model is particularly adapted to the scenarios where a user feeds back its CSI to its serving base only as it is envisioned in future LTE networks. We analyze the impact of the delay during the backhaul-based CSI exchange on the rate performance achieved by Network MIMO. We highlight how delay can dramatically degrade system performance if existing precoding methods are to be used. We propose an alternative robust beamforming strategy which achieves the maximal performance, in DoF sense. We verify by simulations that the theoretical DoF improvement translates into a performance increase at finite Signal-to-Noise Ratio (SNR) as well. I.

### 1Degrees of Freedom of Certain Interference Alignment Schemes with Distributed CSIT

"... In this work, we consider the use of interference alignment (IA) in a MIMO interference channel (IC) under the assumption that each transmitter (TX) has access to channel state information (CSI) that generally differs from that available to other TXs. This setting is referred to as distributed CSIT. ..."

Abstract
- Add to MetaCart

In this work, we consider the use of interference alignment (IA) in a MIMO interference channel (IC) under the assumption that each transmitter (TX) has access to channel state information (CSI) that generally differs from that available to other TXs. This setting is referred to as distributed CSIT. In a setting where CSI accuracy is controlled by a set of power exponents, we show that in the static 3-user MIMO square IC, the number of degrees-of-freedom (DoF) that can be achieved with distributed CSIT is at least equal to the DoF achieved with the worst accuracy taken across the TXs and across the interfering links. We conjecture further that this represents exactly the DoF achieved. This result is in strong contrast with the centralized CSIT configuration usually studied (where all the TXs share the same, possibly imperfect, channel estimate) for which it was shown that the DoF achieved at receiver (RX) i is solely limited by the quality of its own feedback. This shows the critical impact of CSI discrepancies between the TXs, and highlights the price paid by distributed precoding.

### Spatial CSIT Allocation Policies for Network MIMO Channels

"... In this work1, we study the problem of the optimal dissemination of channel state information (CSI) among K spatially distributed transmitters (TXs) jointly cooperating to serve K receivers (RXs). One of the particularities of this work lies in the fact that the CSI is distributed in the sense that ..."

Abstract
- Add to MetaCart

(Show Context)
In this work1, we study the problem of the optimal dissemination of channel state information (CSI) among K spatially distributed transmitters (TXs) jointly cooperating to serve K receivers (RXs). One of the particularities of this work lies in the fact that the CSI is distributed in the sense that each TX obtains its own estimate of the global multi-user MIMO channel with no further exchange of information being allowed between the TXs. Although this is well suited to model the cooperation between non-colocated TXs, e.g., in cellular Coordinated Multipoint (CoMP) schemes, this type of setting has received little attention so far in the information theoretic society. We study in this work what are the CSI requirements at every TX, as a function of the network geometry, to ensure that the maximal number of degrees-of-freedom (DoF) is achieved, i.e., the same DoF as obtained under perfect CSI at all TXs. We advocate the use of the generalized DoF to take into account the geometry of the network in the analysis. Consistent with the intuition, the derived DoF maximizing CSI allocation policy suggests that TX cooperation should be limited to a specific finite neighborhood around each TX. This is in sharp contrast with the conventional (uniform) CSI dissemination policy which induces CSI requirements that grow unbounded with the network size. The proposed CSI allocation policy suggests an alternative to clustering which overcomes fundamental limitations such as (i) edge interference and (ii) unbounded increase of the CSIT requirements with the cluster size. Finally, we show how finite neighborhood CSIT exchange translates into finite neighborhood message exchange so that finally global interference management is possible with only local cooperation. 1This work has been performed under the Celtic-Plus project SHARING. Preliminary results have been published in [1]. ar X iv

### 1Robust Precoding for Network MIMO with Hierarchical CSIT

"... In this work1 we consider a wireless network with K cooperating transmitters (TXs) serving jointly K receivers (RXs). Due to the practical limitations of the backhaul network, it is relevant to consider a setting where each TX receives its own imperfect estimate of the multi-user channel state, deno ..."

Abstract
- Add to MetaCart

(Show Context)
In this work1 we consider a wireless network with K cooperating transmitters (TXs) serving jointly K receivers (RXs). Due to the practical limitations of the backhaul network, it is relevant to consider a setting where each TX receives its own imperfect estimate of the multi-user channel state, denoted as the distributed channel state information (CSI) setting. We focus in this work on a particular distributed CSI configuration called hierarchical CSI configuration in which the TXs can be ordered by increasing level of CSI. This scenario is particularly relevant for future networks with heterogeneous backhaul where the TXs connected with a weak backhaul link will receive only a coarse estimate while the TXs with a stronger backhaul will have a more accurate CSI. In that scenario, we formulate the optimal precoding as a team decision problem. Solving optimally this problem is extremely challenging such that we propose a heuristic approach allowing to obtain a simple, yet efficient and practical, precoding algorithm. The proposed precoding algorithm exploits the hierarchical structure of the CSI to make the transmission more robust to the imperfect CSI knowledge at the TXs. 1The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n 317941. The authors would like to acknowledge the contributions of their colleagues in iJOIN, although the views expressed are those of the authors and do not necessarily represent the project. ar X iv

### RESEARCH Open Access

"... On the impact of control channel reliability on coordinated multi-point transmission ..."

Abstract
- Add to MetaCart

(Show Context)
On the impact of control channel reliability on coordinated multi-point transmission