Results 1  10
of
195
Dynamic Logic
 Handbook of Philosophical Logic
, 1984
"... ed to be true under the valuation u iff there exists an a 2 N such that the formula x = y is true under the valuation u[x=a], where u[x=a] agrees with u everywhere except x, on which it takes the value a. This definition involves a metalogical operation that produces u[x=a] from u for all possibl ..."
Abstract

Cited by 1012 (7 self)
 Add to MetaCart
ed to be true under the valuation u iff there exists an a 2 N such that the formula x = y is true under the valuation u[x=a], where u[x=a] agrees with u everywhere except x, on which it takes the value a. This definition involves a metalogical operation that produces u[x=a] from u for all possible values a 2 N. This operation becomes explicit in DL in the form of the program x := ?, called a nondeterministic or wildcard assignment. This is a rather unconventional program, since it is not effective; however, it is quite useful as a descriptive tool. A more conventional way to obtain a square root of y, if it exists, would be the program x := 0 ; while x < y do x := x + 1: (1) In DL, such programs are firstclass objects on a par with formulas, complete with a collection of operators for forming compound programs inductively from a basis of primitive programs. To discuss the effect of the execution of a program on the truth of a formula ', DL uses a modal construct <>', which
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 102 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Probabilistic Extensions of Process Algebras
 Handbook of Process Algebra
, 2001
"... INTRODUCTION Classic process, algebras such as CCS, CSP and ACP, are wellestablished techniques for modelling and reasoning about functional aspects of concurrent processes. The motivation for studying probabilistic extensions of process algebras is to develop techniques dealing with nonfunctiona ..."
Abstract

Cited by 80 (7 self)
 Add to MetaCart
(Show Context)
INTRODUCTION Classic process, algebras such as CCS, CSP and ACP, are wellestablished techniques for modelling and reasoning about functional aspects of concurrent processes. The motivation for studying probabilistic extensions of process algebras is to develop techniques dealing with nonfunctional aspects of process behavior, such as performance and reliability. We may want to investigate, e.g., the average response time of a system, or the ? This chapter is dedicated to the fond memory of Linda Christoff. probability that a certain failure occurs. An analysis of these and similar properties requires that some form of information about the stochastic distribution over the occurrence of relevant events is put into the model. For instance, performance evaluation is often based on modeling a system as a continuoustime Markov process, in which distributions over delays between actions and over the choice between different actions are specified. Similar
Metrics for Labelled Markov Processes
, 2003
"... The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature ..."
Abstract

Cited by 74 (14 self)
 Add to MetaCart
The notion of process equivalence of probabilistic processes is sensitive to the exact probabilities of transitions. Thus, a slight change in the transition probabilities will result in two equivalent processes being deemed no longer equivalent. This instability is due to the quantitative nature of probabilistic processes. In a situation where the process behaviour has a quantitative aspect there should be a more robust approach to process equivalence. This paper studies a metric between labelled Markov processes. This metric has the property that processes are at zero distance if and only if they are bisimilar. The metric is inspired by earlier work on logics for characterizing bisimulation and is related, in spirit, to the Kantorovich metric.
The Metric Analogue of Weak Bisimulation for Probabilistic Processes
, 2002
"... We observe that equivalence is not a robust concept in the presence of numerical information  such as probabilities  in the model. We develop a metric analogue of weak bisimulation in the spirit of our earlier work on metric analogues for strong bisimulation. We give a fixed point characterization ..."
Abstract

Cited by 68 (2 self)
 Add to MetaCart
We observe that equivalence is not a robust concept in the presence of numerical information  such as probabilities  in the model. We develop a metric analogue of weak bisimulation in the spirit of our earlier work on metric analogues for strong bisimulation. We give a fixed point characterization of the metric. This makes available coinductive reasoning principles and allows us to prove metric analogues of the usual algebraic laws for process combinators. We also show that quantitative properties of interest are continuous with respect to the metric, which says that if two processes are close in the metric then observable quantitative properties of interest are indeed close. As an important example of this we show that nearby processes have nearby channel capacities  a quantitative measure of their propensity to leak information.
Comparative branchingtime semantics for Markov chains
 Information and Computation
, 2003
"... This paper presents various semantics in the branchingtime spectrum of discretetime and continuoustime Markov chains (DTMCs and CTMCs). Strong and weak bisimulation equivalence and simulation preorders are covered and are logically characterised in terms of the temporal logics PCTL (Probabilisti ..."
Abstract

Cited by 64 (17 self)
 Add to MetaCart
(Show Context)
This paper presents various semantics in the branchingtime spectrum of discretetime and continuoustime Markov chains (DTMCs and CTMCs). Strong and weak bisimulation equivalence and simulation preorders are covered and are logically characterised in terms of the temporal logics PCTL (Probabilistic Computation Tree Logic) and CSL (Continuous Stochastic Logic). Apart from presenting various existing branchingtime relations in a uniform manner, this paper presents the following new results: (i) strong simulation for CTMCs, (ii) weak simulation for CTMCs and DTMCs, (iii) logical characterizations thereof (including weak bisimulation for DTMCs), (iv) a relation between weak bisimulation and weak simulation equivalence, and (v) various connections between equivalences and preorders in the continuous and discretetime setting. The results are summarized in a branchingtime spectrum for DTMCs and CTMCs elucidating their semantics as well as their relationship. Key Words: comparative semantics, Markov chain, (weak) simulation, (weak) bisimulation, temporal logic
Model Checking for Probability and Time: From Theory to Practice
 In Proc. Logic in Computer Science
, 2003
"... Probability features increasingly often in software and hardware systems: it is used in distributed coordination and routing problems, to model faulttolerance and performance, and to provide adaptive resource management strategies. Probabilistic model checking is an automatic procedure for establi ..."
Abstract

Cited by 63 (1 self)
 Add to MetaCart
(Show Context)
Probability features increasingly often in software and hardware systems: it is used in distributed coordination and routing problems, to model faulttolerance and performance, and to provide adaptive resource management strategies. Probabilistic model checking is an automatic procedure for establishing if a desired property holds in a probabilistic model, aimed at verifying probabilistic specifications such as "leader election is eventually resolved with probability 1", "the chance of shutdown occurring is at most 0.01%", and "the probability that a message will be delivered within 30ms is at least 0.75". A probabilistic model checker calculates the probability of a given temporal logic property being satisfied, as opposed to validity. In contrast to conventional model checkers, which rely on reachability analysis of the underlying transition system graph, probabilistic model checking additionally involves numerical solutions of linear equations and linear programming problems. This paper reports our experience with implementing PRISM (www.cs.bham.ac.uk/dxp/ prism/), a Probabilistic Symbolic Model Checker, demonstrates its usefulness in analysing realworld probabilistic protocols, and outlines future challenges for this research direction.
Gamebased abstraction for Markov decision processes
, 2006
"... In this paper we present a novel abstraction technique for Markov decision processes (MDPs), which are widely used for modelling systems that exhibit both probabilistic and nondeterministic behaviour. In the field of model checking, abstraction has proved an extremely successful tool to combat the s ..."
Abstract

Cited by 53 (15 self)
 Add to MetaCart
(Show Context)
In this paper we present a novel abstraction technique for Markov decision processes (MDPs), which are widely used for modelling systems that exhibit both probabilistic and nondeterministic behaviour. In the field of model checking, abstraction has proved an extremely successful tool to combat the statespace explosion problem. In the probabilistic setting, however, little practical progress has been made in this area. We propose an abstraction method for MDPs based on stochastic twoplayer games. The key idea behind this approach is to maintain a separation between nondeterminism present in the original MDP and nondeterminism introduced through abstraction, each type being represented by a different player in the game. Crucially, this allows us to obtain distinct lower and upper bounds for both the best and worstcase performance (minimum or maximum probabilities) of the MDP. We have implemented our techniques and illustrate their practical utility by applying them to a quantitative analysis of the Zeroconf dynamic network configuration protocol. 1.
A Hierarchy of Probabilistic System Types
, 2003
"... We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors. This latter transformation preserves homomorphisms and thus bisimulations. For comparison of probabilistic system types we also need reflection of bisimulation. We build the hierarchy of probabilistic systems by exploiting the new result that the transformation also reflects bisimulation in case the natural transformation is componentwise injective and the first functor preserves weak pullbacks. Additionally, we illustrate the correspondence of concrete and coalgebraic bisimulation in the case of general Segalatype systems.
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 51 (19 self)
 Add to MetaCart
(Show Context)
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how