Results 1 - 10
of
736
An introduction to variational methods for graphical models
- TO APPEAR: M. I. JORDAN, (ED.), LEARNING IN GRAPHICAL MODELS
"... ..."
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract
-
Cited by 770 (3 self)
- Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
The Infinite Hidden Markov Model
- Machine Learning
, 2002
"... We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. Th ..."
Abstract
-
Cited by 637 (41 self)
- Add to MetaCart
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. These three hyperparameters define a hierarchical Dirichlet process capable of capturing a rich set of transition dynamics. The three hyperparameters control the time scale of the dynamics, the sparsity of the underlying state-transition matrix, and the expected number of distinct hidden states in a finite sequence. In this framework it is also natural to allow the alphabet of emitted symbols to be infinite---consider, for example, symbols being possible words appearing in English text.
Ensemble Methods in Machine Learning
- MULTIPLE CLASSIFIER SYSTEMS, LBCS-1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boostin ..."
Abstract
-
Cited by 625 (3 self)
- Add to MetaCart
(Show Context)
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boosting. This paper reviews these methods and explains why ensembles can often perform better than any single classifier. Some previous studies comparing ensemble methods are reviewed, and some new experiments are presented to uncover the reasons that Adaboost does not overfit rapidly.
A family of algorithms for approximate Bayesian inference
, 2001
"... One of the major obstacles to using Bayesian methods for pattern recognition has been its computational expense. This thesis presents an approximation technique that can perform Bayesian inference faster and more accurately than previously possible. This method, "Expectation Propagation," ..."
Abstract
-
Cited by 366 (11 self)
- Add to MetaCart
One of the major obstacles to using Bayesian methods for pattern recognition has been its computational expense. This thesis presents an approximation technique that can perform Bayesian inference faster and more accurately than previously possible. This method, "Expectation Propagation," unifies and generalizes two previous techniques: assumeddensity filtering, an extension of the Kalman filter, and loopy belief propagation, an extension of belief propagation in Bayesian networks. The unification shows how both of these algorithms can be viewed as approximating the true posterior distribution with a simpler distribution, which is close in the sense of KL-divergence. Expectation Propagation exploits the best of both algorithms: the generality of assumed-density filtering and the accuracy of loopy belief propagation. Loopy belief propagation, because it propagates exact belief states, is useful for limited types of belief networks, such as purely discrete networks. Expectation Propagati...
A Unifying Review of Linear Gaussian Models
, 1999
"... Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observa ..."
Abstract
-
Cited by 351 (18 self)
- Add to MetaCart
(Show Context)
Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model. We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models.
Slice sampling
- Annals of Statistics
, 2000
"... Abstract. Markov chain sampling methods that automatically adapt to characteristics of the distribution being sampled can be constructed by exploiting the principle that one can sample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain th ..."
Abstract
-
Cited by 305 (5 self)
- Add to MetaCart
(Show Context)
Abstract. Markov chain sampling methods that automatically adapt to characteristics of the distribution being sampled can be constructed by exploiting the principle that one can sample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertical direction with uniform sampling from the horizontal ‘slice ’ defined by the current vertical position, or more generally, with some update that leaves the uniform distribution over this slice invariant. Variations on such ‘slice sampling ’ methods are easily implemented for univariate distributions, and can be used to sample from a multivariate distribution by updating each variable in turn. This approach is often easier to implement than Gibbs sampling, and more efficient than simple Metropolis updates, due to the ability of slice sampling to adaptively choose the magnitude of changes made. It is therefore attractive for routine and automated use. Slice sampling methods that update all variables simultaneously are also possible. These methods can adaptively choose the magnitudes of changes made to each variable, based on the local properties of the density function. More ambitiously, such methods could potentially allow the sampling to adapt to dependencies between variables by constructing local quadratic approximations. Another approach is to improve sampling efficiency by suppressing random walks. This can be done using ‘overrelaxed ’ versions of univariate slice sampling procedures, or by using ‘reflective ’ multivariate slice sampling methods, which bounce off the edges of the slice.
Fields of experts: A framework for learning image priors
- In CVPR
, 2005
"... We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov Random Field (MRF) models by learning potential functions over extended pixel neighborhood ..."
Abstract
-
Cited by 292 (4 self)
- Add to MetaCart
(Show Context)
We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov Random Field (MRF) models by learning potential functions over extended pixel neighborhoods. Field potentials are modeled using a Products-of-Experts framework that exploits nonlinear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field of Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with and even outperform specialized techniques. 1.