Results 1  10
of
121
Hierarchical Bayesian Inference in the Visual Cortex
, 2002
"... this paper, we propose a Bayesian theory of hierarchical cortical computation based both on (a) the mathematical and computational ideas of computer vision and pattern the ory and on (b) recent neurophysiological experimental evidence. We ,2 have proposed that Grenander's pattern theory 3 coul ..."
Abstract

Cited by 300 (2 self)
 Add to MetaCart
this paper, we propose a Bayesian theory of hierarchical cortical computation based both on (a) the mathematical and computational ideas of computer vision and pattern the ory and on (b) recent neurophysiological experimental evidence. We ,2 have proposed that Grenander's pattern theory 3 could potentially model the brain as a generafive model in such a way that feedback serves to disambiguate and 'explain away' the earlier representa tion. The Helmholtz machine 4, 5 was an excellent step towards approximating this proposal, with feedback implementing priors. Its development, however, was rather limited, dealing only with binary images. Moreover, its feedback mechanisms were engaged only during the learning of the feedforward connections but not during perceptual inference, though the Gibbs sampling process for inference can potentially be interpreted as topdown feedback disambiguating low level representations? Rao and Ballard's predictive coding/Kalman filter model 6 did integrate generafive feedback in the perceptual inference process, but it was primarily a linear model and thus severely limited in practical utility. The datadriven Markov Chain Monte Carlo approach of Zhu and colleagues 7, 8 might be the most successful recent application of this proposal in solving real and difficult computer vision problems using generafive models, though its connection to the visual cortex has not been explored. Here, we bring in a powerful and widely applicable paradigm from artificial intelligence and computer vision to propose some new ideas about the algorithms of visual cortical process ing and the nature of representations in the visual cortex. We will review some of our and others' neurophysiological experimental data to lend support to these ideas
Nonparametric Belief Propagation
 IN CVPR
, 2002
"... In applications of graphical models arising in fields such as computer vision, the hidden variables of interest are most naturally specified by continuous, nonGaussian distributions. However, due to the limitations of existing inf#6F6F3 algorithms, it is of#]k necessary tof#3# coarse, ..."
Abstract

Cited by 279 (25 self)
 Add to MetaCart
In applications of graphical models arising in fields such as computer vision, the hidden variables of interest are most naturally specified by continuous, nonGaussian distributions. However, due to the limitations of existing inf#6F6F3 algorithms, it is of#]k necessary tof#3# coarse, discrete approximations to such models. In this paper, we develop a nonparametric belief propagation (NBP) algorithm, which uses stochastic methods to propagate kernelbased approximations to the true continuous messages. Each NBP message update is based on an efficient sampling procedure which can accomodate an extremely broad class of potentialf#l3]k[[z3 allowing easy adaptation to new application areas. We validate our method using comparisons to continuous BP for Gaussian networks, and an application to the stereo vision problem.
ZISSERMAN A.: Tracking people by learning their appearance.
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2007
"... ..."
(Show Context)
Global Stereo Reconstruction under Second Order Smoothness Priors
"... Secondorder priors on the smoothness of 3D surfaces are a better model of typical scenes than firstorder priors. However, stereo reconstruction using global inference algorithms, such as graphcuts, has not been able to incorporate secondorder priors because the triple cliques needed to express t ..."
Abstract

Cited by 127 (8 self)
 Add to MetaCart
Secondorder priors on the smoothness of 3D surfaces are a better model of typical scenes than firstorder priors. However, stereo reconstruction using global inference algorithms, such as graphcuts, has not been able to incorporate secondorder priors because the triple cliques needed to express them yield intractable (nonsubmodular) optimization problems. This paper shows that inference with triple cliques can be effectively optimized. Our optimization strategy is a development of recent extensions to αexpansion, based on the “QPBO ” algorithm [5, 14, 26]. The strategy is to repeatedly merge proposal depth maps using a novel extension of QPBO. Proposal depth maps can come from any source, for example frontoparallel planes as in αexpansion, or indeed any existing stereo algorithm, with arbitrary parameter settings. Experimental results demonstrate the usefulness of the secondorder prior and the efficacy of our optimization framework. An implementation of our stereo framework is available online [34].
Loopy belief propagation: Convergence and effects of message errors
 Journal of Machine Learning Research
, 2005
"... Belief propagation (BP) is an increasingly popular method of performing approximate inference on arbitrary graphical models. At times, even further approximations are required, whether due to quantization of the messages or model parameters, from other simplified message or model representations, or ..."
Abstract

Cited by 104 (9 self)
 Add to MetaCart
(Show Context)
Belief propagation (BP) is an increasingly popular method of performing approximate inference on arbitrary graphical models. At times, even further approximations are required, whether due to quantization of the messages or model parameters, from other simplified message or model representations, or from stochastic approximation methods. The introduction of such errors into the BP message computations has the potential to affect the solution obtained adversely. We analyze the effect resulting from message approximation under two particular measures of error, and show bounds on the accumulation of errors in the system. This analysis leads to convergence conditions for traditional BP message passing, and both strict bounds and estimates of the resulting error in systems of approximate BP message passing. 1
Nonparametric Belief Propagation for SelfCalibration in Sensor Networks
 In Proceedings of the Third International Symposium on Information Processing in Sensor Networks
, 2004
"... Automatic selfcalibration of adhoc sensor networks is a critical need for their use in military or civilian applications. In general, selfcalibration involves the combination of absolute location information (e.g. GPS) with relative calibration information (e.g. time delay or received signal stre ..."
Abstract

Cited by 99 (7 self)
 Add to MetaCart
Automatic selfcalibration of adhoc sensor networks is a critical need for their use in military or civilian applications. In general, selfcalibration involves the combination of absolute location information (e.g. GPS) with relative calibration information (e.g. time delay or received signal strength between sensors) over regions of the network. Furthermore, it is generally desirable to distribute the computational burden across the network and minimize the amount of intersensor communication. We demonstrate that the information used for sensor calibration is fundamentally local with regard to the network topology and use this observation to reformulate the problem within a graphical model framework. We then demonstrate the utility of nonparametric belief propagation (NBP), a recent generalization of particle filtering, for both estimating sensor locations and representing location uncertainties. NBP has the advantage that it is easily implemented in a distributed fashion, admits a wide variety of statistical models, and can represent multimodal uncertainty. We illustrate the performance of NBP on several example networks while comparing to a previously published nonlinear least squares method.
Nonparametric belief propagation for selflocalization of sensor networks
 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2005
"... Automatic selflocalization is a critical need for the effective use of adhoc sensor networks in military or civilian applications. In general, selflocalization involves the combination of absolute location information (e.g. GPS) with relative calibration information (e.g. distance measurements b ..."
Abstract

Cited by 98 (3 self)
 Add to MetaCart
(Show Context)
Automatic selflocalization is a critical need for the effective use of adhoc sensor networks in military or civilian applications. In general, selflocalization involves the combination of absolute location information (e.g. GPS) with relative calibration information (e.g. distance measurements between sensors) over regions of the network. Furthermore, it is generally desirable to distribute the computational burden across the network and minimize the amount of intersensor communication. We demonstrate that the information used for sensor localization is fundamentally local with regard to the network topology and use this observation to reformulate the problem within a graphical model framework. We then present and demonstrate the utility of nonparametric belief propagation (NBP), a recent generalization of particle filtering, for both estimating sensor locations and representing location uncertainties. NBP has the advantage that it is easily implemented in a distributed fashion, admits a wide variety of statistical models, and can represent multimodal uncertainty. Using simulations of small to moderatelysized sensor networks, we show that NBP may be made robust to outlier measurement errors by a simple model augmentation, and that judicious message construction can result in better estimates. Furthermore, we provide an analysis of NBP’s communications requirements, showing that typically only a few messages per sensor are required, and that even low bitrate approximations of these messages can have little or no performance impact.
Measure locally, reason globally: Occlusionsensitive articulated pose estimation
 In CVPR 2006
, 2006
"... Partbased treestructured models have been widely used for 2D articulated human poseestimation. These approaches admit efficient inference algorithms while capturing the important kinematic constraints of the human body as a graphical model. These methods often fail however when multiple body part ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
(Show Context)
Partbased treestructured models have been widely used for 2D articulated human poseestimation. These approaches admit efficient inference algorithms while capturing the important kinematic constraints of the human body as a graphical model. These methods often fail however when multiple body parts fit the same image region resulting in global pose estimates that poorly explain the overall image evidence. Attempts to solve this problem have focused on the use of strong prior models that are limited to learned activities such as walking. We argue that the problem actually lies with the image observations and not with the prior. In particular, image evidence for each body part is estimated independently of other parts without regard to selfocclusion. To address this we introduce occlusionsensitive local likelihoods that approximate the global image likelihood using perpixel hidden binary variables that encode the occlusion relationships between parts. This occlusion reasoning introduces interactions between nonadjacent body parts creating loops in the underlying graphical model. We deal with this using an extension of an approximate belief propagation algorithm (PAMPAS). The algorithm recovers the realvalued 2D pose of the body in the presence of occlusions, does not require strong priors over body pose and does a quantitatively better job of explaining image evidence than previous methods. 1.
Visual hand tracking using nonparametric belief propagation
 Propagation,” IEEE Workshop on Generative Model Based Vision
, 2004
"... Abstract — This paper develops probabilistic methods for visual tracking of a threedimensional geometric hand model from monocular image sequences. We consider a redundant representation in which each model component is described by its position and orientation in the world coordinate frame. A prio ..."
Abstract

Cited by 71 (1 self)
 Add to MetaCart
(Show Context)
Abstract — This paper develops probabilistic methods for visual tracking of a threedimensional geometric hand model from monocular image sequences. We consider a redundant representation in which each model component is described by its position and orientation in the world coordinate frame. A prior model is then defined which enforces the kinematic constraints implied by the model’s joints. We show that this prior has a local structure, and is in fact a pairwise Markov random field. Furthermore, our redundant representation allows color and edgebased likelihood measures, such as the Chamfer distance, to be similarly decomposed in cases where there is no self–occlusion. Given this graphical model of hand kinematics, we may track the hand’s motion using the recently proposed nonparametric belief propagation (NBP) algorithm. Like particle filters, NBP approximates the posterior distribution over hand configurations as a collection of samples. However, NBP uses the graphical structure to greatly reduce the dimensionality of these distributions, providing improved robustness. Several methods are used to improve NBP’s computational efficiency, including a novel KDtree based method for fast Chamfer distance evaluation. We provide simulations showing that NBP may be used to refine inaccurate model initializations, as well as track hand motion through extended image sequences. I.
Approximate Bayesian Multibody Tracking
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2006
"... Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This pape ..."
Abstract

Cited by 65 (8 self)
 Add to MetaCart
(Show Context)
Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the tradeoff between reliable modeling and computational efficiency. The Hybrid JointSeparable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physicallybased model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in case of complete occlusion tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust and able to resolve long term occlusions between targets with identical appearance.