Results 1 
5 of
5
GROUP RECONSTRUCTION SYSTEMS
 ELA
, 2011
"... We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geom ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for oneerasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and oneerasure robust GRS’s.
Procrustes problems and Parseval quasidual frames
, 2013
"... All intext references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately. ..."
Abstract
 Add to MetaCart
(Show Context)
All intext references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.