Results 1 
2 of
2
Online and DifferentiallyPrivate Tensor Decomposition
"... Abstract Tensor decomposition is an important tool for big data analysis. In this paper, we resolve many of the key algorithmic questions regarding robustness, memory efficiency, and differential privacy of tensor decomposition. We propose simple variants of the tensor power method which enjoy thes ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Abstract Tensor decomposition is an important tool for big data analysis. In this paper, we resolve many of the key algorithmic questions regarding robustness, memory efficiency, and differential privacy of tensor decomposition. We propose simple variants of the tensor power method which enjoy these strong properties. We present the first guarantees for online tensor power method which has a linear memory requirement. Moreover, we present a noise calibrated tensor power method with efficient privacy guarantees. At the heart of all these guarantees lies a careful perturbation analysis derived in this paper which improves up on the existing results significantly.
Sublinear Time Orthogonal Tensor Decomposition *
"... Abstract A recent work (Wang et. al., NIPS 2015) gives the fastest known algorithms for orthogonal tensor decomposition with provable guarantees. Their algorithm is based on computing sketches of the input tensor, which requires reading the entire input. We show in a number of cases one can achiev ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract A recent work (Wang et. al., NIPS 2015) gives the fastest known algorithms for orthogonal tensor decomposition with provable guarantees. Their algorithm is based on computing sketches of the input tensor, which requires reading the entire input. We show in a number of cases one can achieve the same theoretical guarantees in sublinear time, i.e., even without reading most of the input tensor. Instead of using sketches to estimate inner products in tensor decomposition algorithms, we use importance sampling. To achieve sublinear time, we need to know the norms of tensor slices, and we show how to do this in a number of important cases. For symmetric tensors T = k i=1 λ i u ⊗p i with λ i > 0 for all i, we estimate such norms in sublinear time whenever p is even. For the important case of p = 3 and small values of k, we can also estimate such norms. For asymmetric tensors sublinear time is not possible in general, but we show if the tensor slice norms are just slightly below T F then sublinear time is again possible. One of the main strengths of our work is empirical in a number of cases our algorithm is orders of magnitude faster than existing methods with the same accuracy.