Results 1  10
of
362
Finite Sequences and Tuples of Elements of a Nonempty Sets
, 1990
"... this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a nonempty set D and it is denoted by element of D ..."
Abstract

Cited by 332 (7 self)
 Add to MetaCart
(Show Context)
this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a nonempty set D and it is denoted by element of D
Binary operations applied to functions
 Journal of Formalized Mathematics
, 1989
"... Summary. In the article we introduce functors yielding to a binary operation its composition with an arbitrary functions on its left side, its right side or both. We prove theorems describing the basic properties of these functors. We introduce also constant functions and converse of a function. The ..."
Abstract

Cited by 299 (43 self)
 Add to MetaCart
(Show Context)
Summary. In the article we introduce functors yielding to a binary operation its composition with an arbitrary functions on its left side, its right side or both. We prove theorems describing the basic properties of these functors. We introduce also constant functions and converse of a function. The recent concept is defined for an arbitrary function, however is meaningful in the case of functions which range is a subset of a Cartesian product of two sets. Then the converse of a function has the same domain as the function itself and assigns to an element of the domain the mirror image of the ordered pair assigned by the function. In the case of functions defined on a nonempty set we redefine the above mentioned functors and prove simplified versions of theorems proved in the general case. We prove also theorems stating relationships between introduced concepts and such properties of binary operations as commutativity or associativity.
Basis of Real Linear Space
, 1990
"... this paper. For simplicity, we follow the rules: x is a set, a, b are real numbers, V is a real linear space, W 1 , W 2 , W 3 are subspaces of V , v, v 1 , v 2 are vectors of V , A, B are subsets of the carrier of V , L, L 1 , L 2 are linear combinations of V , l is a linear combination of A, F , G ..."
Abstract

Cited by 285 (21 self)
 Add to MetaCart
(Show Context)
this paper. For simplicity, we follow the rules: x is a set, a, b are real numbers, V is a real linear space, W 1 , W 2 , W 3 are subspaces of V , v, v 1 , v 2 are vectors of V , A, B are subsets of the carrier of V , L, L 1 , L 2 are linear combinations of V , l is a linear combination of A, F , G
The sum and product of finite sequences of real numbers.
 Formalized Mathematics,
, 1990
"... ..."
(Show Context)
Complete lattices
 Journal of Formalized Mathematics
, 1992
"... Summary. In the first section the lattice of subsets of distinct set is introduced. The join and meet operations are, respectively, union and intersection of sets, and the ordering relation is inclusion. It is shown that this lattice is Boolean, i.e. distributive and complementary. The second sectio ..."
Abstract

Cited by 119 (33 self)
 Add to MetaCart
(Show Context)
Summary. In the first section the lattice of subsets of distinct set is introduced. The join and meet operations are, respectively, union and intersection of sets, and the ordering relation is inclusion. It is shown that this lattice is Boolean, i.e. distributive and complementary. The second section introduces the poset generated in a distinct lattice by its ordering relation. Besides, it is proved that posets which have l.u.b.’s and g.l.b.’s for every two elements generate lattices with the same ordering relations. In the last section the concept of complete lattice is introduced and discussed. Finally, the fact that the function f from subsets of distinct set yielding elements of this set is a infinite union of some complete lattice, if f yields an element a for singleton {a} and f ( f ◦X) = f ( ⊔ X) for every subset X, is proved. Some concepts and proofs are based on [8] and [9].
The Euclidean Space
, 1991
"... this paper. In this paper k, n are natural numbers and r is a real number. Let us consider n. The functor R ..."
Abstract

Cited by 83 (0 self)
 Add to MetaCart
this paper. In this paper k, n are natural numbers and r is a real number. Let us consider n. The functor R
Binary operations applied to finite sequences.
 Formalized Mathematics,
, 1990
"... ..."
(Show Context)
Semilattice operations on finite subsets
 Journal of Formalized Mathematics
, 1989
"... Summary. In the article we deal with a binary operation that is associative, commutative. We define for such an operation a functor that depends on two more arguments: a finite set of indices and a function indexing elements of the domain of the operation and yields the result of applying the operat ..."
Abstract

Cited by 64 (16 self)
 Add to MetaCart
(Show Context)
Summary. In the article we deal with a binary operation that is associative, commutative. We define for such an operation a functor that depends on two more arguments: a finite set of indices and a function indexing elements of the domain of the operation and yields the result of applying the operation to all indexed elements. The definition has a restriction that requires that either the set of indices is non empty or the operation has the unity. We prove theorems describing some properties of the functor introduced. Most of them we prove in two versions depending on which requirement is fulfilled. In the second part we deal with the union of finite sets that enjoys mentioned above properties. We prove analogs of the theorems proved in the first part. We precede the main part of the article with auxiliary theorems related to boolean properties of sets, enumerated sets, finite subsets, and functions. We define a casting function that yields to a set the empty set typed as a finite subset of the set. We prove also two schemes of the induction on finite sets.
Construction of rings and left, right, and bimodules over a ring
 Journal of Formalized Mathematics
, 1990
"... Summary. Definitions of some classes of rings and left, right, and bimodules over a ring and some elementary theorems on rings and skew fields. ..."
Abstract

Cited by 63 (16 self)
 Add to MetaCart
(Show Context)
Summary. Definitions of some classes of rings and left, right, and bimodules over a ring and some elementary theorems on rings and skew fields.