Results 1 - 10
of
236
The persona effect: Affective impact of animated pedagogical agents
, 1997
"... Animated pedagogical agents that inhabit interactive learning environments can exhibit strikingly lifelike behaviors. In addition to providing problem-solving advice in response to students ’ activities in the learning environment, these agents may also be able to play a powerful motivational role. ..."
Abstract
-
Cited by 270 (15 self)
- Add to MetaCart
(Show Context)
Animated pedagogical agents that inhabit interactive learning environments can exhibit strikingly lifelike behaviors. In addition to providing problem-solving advice in response to students ’ activities in the learning environment, these agents may also be able to play a powerful motivational role. To design the most effective agent-based learning environment software, it is essential to understand how students perceive an animated pedagogical agent with regard to affective dimensions such as encouragement, utility, credibility, and clarity. This paper describes a study of the affective impact of animated pedagogical agents on students ’ learning experiences. One hundred middle school students interacted with animated pedagogical agents to assess their perception of agents ’ affective characteristics. The study revealed the persona effect, which is that the presence of a lifelike character in an interactive learning environment—even one that is not expressive— can have a strong positive effect on student’s perception of their learning experience. The study also demonstrates the interesting effect of multiple types of explanatory behaviors on both affective perception and learning performance.
A survey of deformable modeling in computer graphics
, 1997
"... This paper presents a survey of the work done in modeling deformable objects within the computer graphics research community. The research has a long history and a wide variety of approaches have been used. This paper organizes the diversity of research by the technique used rather than by the appli ..."
Abstract
-
Cited by 191 (1 self)
- Add to MetaCart
(Show Context)
This paper presents a survey of the work done in modeling deformable objects within the computer graphics research community. The research has a long history and a wide variety of approaches have been used. This paper organizes the diversity of research by the technique used rather than by the application, although applications are discussed throughout. This paper presents some purely geometric approaches for modeling deformable objects, but focuses on physically based approaches. In the latter category are mass-spring models, nite element models, approximate continuum models, and low degree of freedom models. Special emphasis is placed on nite element models, which o er the greatest accuracy, but have seen limited use in computer graphics. The paper also suggests important areas for future research. 1
The EMOTE Model for Effort and Shape
, 2000
"... Human movements include limb gestures and postural attitude. Although many computer animation researchers have studied these classes of movements, procedurally generated movements still lack naturalness. We argue that looking only at the psychological notion of gesture is insufficient to capture mov ..."
Abstract
-
Cited by 182 (10 self)
- Add to MetaCart
Human movements include limb gestures and postural attitude. Although many computer animation researchers have studied these classes of movements, procedurally generated movements still lack naturalness. We argue that looking only at the psychological notion of gesture is insufficient to capture movement qualities needed by animated characters. We advocate that the domain of movement observation science, specifically Laban Movement Analysis (LMA) and its Effort and Shape components, provides us with valuable parameters for the form and execution of qualitative aspects of movements. Inspired by some tenets shared among LMA proponents, we also point out that Effort and Shape phrasing across movements and the engagement of the whole body are essential aspects to be considered in the search for naturalness in procedurally generated gestures. Finally, we present EMOTE (Expressive MOTion Engine), a 3D character animation system that applies Effort and Shape qualities to independently defined underlying movements and thereby generates more natural synthetic gestures.
Physically Based Deformable Models in Computer Graphics
- EUROGRAPHICS 2005 STAR – STATE OF THE ART REPORT
, 2005
"... Physically based deformable models have been widely embraced by the Computer Graphics community. Many problems outlined in a previous survey by Gibson and Mirtich [GM97] have been addressed, thereby making these models interesting and useful for both offline and real-time applications, such as motio ..."
Abstract
-
Cited by 164 (3 self)
- Add to MetaCart
Physically based deformable models have been widely embraced by the Computer Graphics community. Many problems outlined in a previous survey by Gibson and Mirtich [GM97] have been addressed, thereby making these models interesting and useful for both offline and real-time applications, such as motion pictures and video games. In this paper, we present the most significant contributions of the past decade, which produce such impressive and perceivably realistic animations and simulations: finite element/difference/volume methods, mass-spring systems, meshfree methods, coupled particle systems and reduced deformable models based on modal analysis. For completeness, we also make a connection to the simulation of other continua, such as fluids, gases and melting objects. Since time integration is inherent to all simulated phenomena, the general notion of time discretization is treated separately, while specifics are left to the respective models. Finally, we discuss areas of application, such as elastoplastic deformation and fracture, cloth and hair animation, virtual surgery simulation, interactive entertainment and fluid/smoke animation, and also suggest areas for future research.
Composable Controllers for Physics-Based Character Animation
, 2001
"... An ambitious goal in the area of physics-based computer animation is the creation of virtual actors that autonomously synthesize realistic human motions and possess a broad repertoire of lifelike motor skills. To this end, the control of dynamic, anthropomorphic figures subject to gravity and contac ..."
Abstract
-
Cited by 157 (22 self)
- Add to MetaCart
An ambitious goal in the area of physics-based computer animation is the creation of virtual actors that autonomously synthesize realistic human motions and possess a broad repertoire of lifelike motor skills. To this end, the control of dynamic, anthropomorphic figures subject to gravity and contact forces remains a difficult open problem. We propose a framework for composing controllers in order to enhance the motor abilities of such figures. A key contribution of our composition framework is an explicit model of the "pre-conditions" under which motor controllers are expected to function properly. We demonstrate controller composition with pre-conditions determined not only manually, but also automatically based on Support Vector Machine (SVM) learning theory. We evaluate our composition framework using a family of controllers capable of synthesizing basic actions such as balance, protective stepping when balance is disturbed, protective arm reactions when falling, and multiple ways of standing up after a fall. We furthermore demonstrate these basic controllers working in conjunction with more dynamic motor skills within a prototype virtual stuntperson. Our composition framework promises to enable the community of physics-based animation practitioners to easily exchange motor controllers and integrate them into dynamic characters.
Adapting Simulated Behaviors for New Characters
, 1997
"... This paper describes an algorithm for automatically adapting existing simulated behaviors to new characters. Animating a new character is difficult because a control system tuned for one character will not, in general, work on a character with different limb lengths, masses, or moments of inertia. T ..."
Abstract
-
Cited by 119 (5 self)
- Add to MetaCart
(Show Context)
This paper describes an algorithm for automatically adapting existing simulated behaviors to new characters. Animating a new character is difficult because a control system tuned for one character will not, in general, work on a character with different limb lengths, masses, or moments of inertia. The algorithm presented here adapts the control system to a new character in two stages. First, the control system parameters are scaled based on the sizes, masses, and moments of inertia of the new and the original characters. Then a subset of the parameters is fine-tuned using a search process based on simulated annealing. To demonstrate the effectiveness of this approach, we animate the running motion of a woman, child, and imaginary character by modifying the control system for a man. We also animate the bicycling motion of a second imaginary character by modifying the control system for a man. We evaluate the results of this approach by comparing the motion of the simulated human runners...
Anatomically Based Modeling
, 1997
"... We describe an improved, anatomically based approach to modeling and animating animals. Underlying muscles, bones, and generalized tissue are modeled as triangle meshes or ellipsoids. Muscles are deformable discretized cylinders lying between fixed origins and insertions on specific bones. Default r ..."
Abstract
-
Cited by 112 (8 self)
- Add to MetaCart
We describe an improved, anatomically based approach to modeling and animating animals. Underlying muscles, bones, and generalized tissue are modeled as triangle meshes or ellipsoids. Muscles are deformable discretized cylinders lying between fixed origins and insertions on specific bones. Default rest muscle shapes can be used, or the rest muscle shape can be designed by the user with a small set of parameters. Muscles automatically change shape as the joints move. Skin is generated by voxelizing the underlying components, filtering, and extracting a polygonal isosurface. Isosurface skin vertices are associated with underlying components and move with them during joint motion. Skin motion is consistent with an elastic membrane model. All components are parameterized and can be reused on similar bodies with non-uniformly scaled parts. This parameterization allows a non-uniformly sampled skin to be extracted, maintaining more details at the head and extremities. CR Categories and Subje...
Distributed, Physics-Based Control of Swarms of Vehicles
- Autonomous Robots
"... We introduce a framework, called "physicomimetics," that provides distributed control of large collections of mobile physical agents in sensor networks. The agents sense and react to virtual forces, which are motivated by natural physics laws. Thus, physicomimetics is founded upon solid sc ..."
Abstract
-
Cited by 107 (26 self)
- Add to MetaCart
(Show Context)
We introduce a framework, called "physicomimetics," that provides distributed control of large collections of mobile physical agents in sensor networks. The agents sense and react to virtual forces, which are motivated by natural physics laws. Thus, physicomimetics is founded upon solid scientific principles. Furthermore, this framework provides an effective basis for self-organization, fault-tolerance, and self-repair. Three primary factors distinguish our framework from others that are related: an emphasis on minimality (e.g., cost effectiveness of large numbers of agents implies a need for expendable platforms with few sensors), ease of implementation, and run-time efficiency. Examples are shown of how this framework has been applied to construct various regular geometric lattice configurations (distributed sensing grids), as well as dynamic behavior for perimeter defense and surveillance. Analyses are provided that facilitate system understanding and predictability, including both qualitative and quantitative analyses of potential energy and a system phase transition. Physicomimetics has been implemented both in simulation and on a team of seven mobile robots. Specifics of the robotic embodiment are presented in the paper.
NeuroAnimator: Fast Neural Network Emulation and Control of Physics-Based Models
, 1998
"... Animation through the numerical simulation of physics-based graphics models offers unsurpassed realism, but it can be computationally demanding. Likewise, finding controllers that enable physics-based models to produce desired animations usually entails formidable computational cost. This paper de ..."
Abstract
-
Cited by 101 (5 self)
- Add to MetaCart
(Show Context)
Animation through the numerical simulation of physics-based graphics models offers unsurpassed realism, but it can be computationally demanding. Likewise, finding controllers that enable physics-based models to produce desired animations usually entails formidable computational cost. This paper demonstrates the possibility of replacing the numerical simulation and control of model dynamics with a dramatically more efficient alternative. In particular, we propose the NeuroAnimator, a novel approach to creating physically realistic animation that exploits neural networks. NeuroAnimators are automatically trained off-line to emulate physical dynamics through the observation of physics-based models in action. Depending on the model, its neural network emulator can yield physically realistic animation one or two orders of magnitude faster than conventional numerical simulation. Furthermore, by exploiting the network structure of the NeuroAnimator, we introduce a fast algorithm for learning controllers that enables either physics-based models or their neural network emulators to synthesize motions satisfying prescribed animation goals. We demonstrate NeuroAnimators for passive and active (actuated) rigid body, articulated, and deformable physics-based models.