Results 1  10
of
186
Exact algorithms for NPhard problems: a survey, in: Combinatorial Optimization—Eureka, you shrink!”,
 Lecture Notes in Computer Science,
, 2003
"... Abstract. We discuss fast exponential time solutions for NPcomplete problems. We survey known results and approaches, we provide pointers to the literature, and we discuss several open problems in this area. The list of discussed NPcomplete problems includes the travelling salesman problem, sched ..."
Abstract

Cited by 151 (4 self)
 Add to MetaCart
Abstract. We discuss fast exponential time solutions for NPcomplete problems. We survey known results and approaches, we provide pointers to the literature, and we discuss several open problems in this area. The list of discussed NPcomplete problems includes the travelling salesman problem, scheduling under precedence constraints, satisfiability, knapsack, graph coloring, independent sets in graphs, bandwidth of a graph, and many more.
Disjoint pattern database heuristics
 Artificial Intelligence
, 2002
"... We explore a method for computing admissible heuristic evaluation functions for search problems. It utilizes pattern databases (Culberson & Schaeffer, 1998), which are precomputed tables of the exact cost of solving various subproblems of an existing problem. Unlike standard pattern database heu ..."
Abstract

Cited by 141 (36 self)
 Add to MetaCart
(Show Context)
We explore a method for computing admissible heuristic evaluation functions for search problems. It utilizes pattern databases (Culberson & Schaeffer, 1998), which are precomputed tables of the exact cost of solving various subproblems of an existing problem. Unlike standard pattern database heuristics, however, we partition our problems into disjoint subproblems, so that the costs of solving the different subproblems can be added together without overestimating the cost of solving the original problem. Previously (Korf & Felner, 2002) we showed how to statically partition the slidingtile puzzles into disjoint groups of tiles to compute an admissible heuristic, using the same partition for each state and problem instance. Here we extend the method and show that it applies to other domains as well. We also present another method for additive heuristics which we call dynamically partitioned pattern databases. Here we partition the problem into disjoint subproblems for each state of the search dynamically. We discuss the pros and cons of each of these methods and apply both methods to three different problem domains: the slidingtile puzzles, the 4peg Towers of Hanoi problem, and finding an optimal vertex cover of a graph. We find that in some problem domains, static partitioning is most effective, while in others dynamic partitioning is a better choice. In each of these problem domains, either statically partitioned or dynamically partitioned pattern database heuristics are the best known heuristics for the problem.
Fixed Parameter Algorithms for Dominating Set and Related Problems on Planar Graphs
, 2002
"... We present an algorithm that constructively produces a solution to the kdominating set problem for planar graphs in time O(c . To obtain this result, we show that the treewidth of a planar graph with domination number (G) is O( (G)), and that such a tree decomposition can be found in O( (G)n) time. ..."
Abstract

Cited by 112 (22 self)
 Add to MetaCart
We present an algorithm that constructively produces a solution to the kdominating set problem for planar graphs in time O(c . To obtain this result, we show that the treewidth of a planar graph with domination number (G) is O( (G)), and that such a tree decomposition can be found in O( (G)n) time. The same technique can be used to show that the kface cover problem ( find a size k set of faces that cover all vertices of a given plane graph) can be solved in O(c n) time, where c 1 = 3 and k is the size of the face cover set. Similar results can be obtained in the planar case for some variants of kdominating set, e.g., kindependent dominating set and kweighted dominating set.
A gentle introduction to memetic algorithms
 Handbook of Metaheuristics
, 2003
"... ..."
(Show Context)
PolynomialTime Data Reduction for DOMINATING SET
 Journal of the ACM
, 2004
"... Dealing with the NPcomplete Dominating Set problem on graphs, we demonstrate the power of data reduction by preprocessing from a theoretical as well as a practical side. In particular, we prove that Dominating Set restricted to planar graphs has a socalled problem kernel of linear size, achiev ..."
Abstract

Cited by 64 (8 self)
 Add to MetaCart
(Show Context)
Dealing with the NPcomplete Dominating Set problem on graphs, we demonstrate the power of data reduction by preprocessing from a theoretical as well as a practical side. In particular, we prove that Dominating Set restricted to planar graphs has a socalled problem kernel of linear size, achieved by two simple and easy to implement reduction rules. Moreover, having implemented our reduction rules, first experiments indicate the impressive practical potential of these rules. Thus, this work seems to open up a new and prospective way how to cope with one of the most important problems in graph theory and combinatorial optimization.
Tight lower bounds for certain parameterized NPhard problems
 Proc. 19th Annual IEEE Conference on Computational Complexity (CCC’04
, 2004
"... Based on the framework of parameterized complexity theory, we derive tight lower bounds on the computational complexity for a number of wellknown NPhard problems. We start by proving a general result, namely that the parameterized weighted satisfiability problem on deptht circuits cannot be solve ..."
Abstract

Cited by 62 (10 self)
 Add to MetaCart
(Show Context)
Based on the framework of parameterized complexity theory, we derive tight lower bounds on the computational complexity for a number of wellknown NPhard problems. We start by proving a general result, namely that the parameterized weighted satisfiability problem on deptht circuits cannot be solved in time no(k) poly(m), where n is the circuit input length, m is the circuit size, and k is the parameter, unless the (t − 1)st level W [t − 1] of the Whierarchy collapses to FPT. By refining this technique, we prove that a group of parameterized NPhard problems, including weighted sat, dominating set, hitting set, set cover, and feature set, cannot be solved in time no(k) poly(m), where n is the size of the universal set from which the k elements are to be selected and m is the instance size, unless the first level W [1] of the Whierarchy collapses to FPT. We also prove that another group of parameterized problems which includes weighted qsat (for any fixed q ≥ 2), clique, and independent set, cannot be solved in time no(k) unless all search problems in the syntactic class SNP, introduced by Papadimitriou and Yannakakis, are solvable in subexponential time. Note that all these parameterized problems have trivial algorithms of running time either n k poly(m) or O(n k). 1
Bidimensionality and Kernels
, 2010
"... Bidimensionality theory appears to be a powerful framework in the development of metaalgorithmic techniques. It was introduced by Demaine et al. [J. ACM 2005] as a tool to obtain subexponential time parameterized algorithms for bidimensional problems on Hminor free graphs. Demaine and Hajiaghayi ..."
Abstract

Cited by 58 (23 self)
 Add to MetaCart
(Show Context)
Bidimensionality theory appears to be a powerful framework in the development of metaalgorithmic techniques. It was introduced by Demaine et al. [J. ACM 2005] as a tool to obtain subexponential time parameterized algorithms for bidimensional problems on Hminor free graphs. Demaine and Hajiaghayi [SODA 2005] extended the theory to obtain polynomial time approximation schemes (PTASs) for bidimensional problems. In this paper, we establish a third metaalgorithmic direction for bidimensionality theory by relating it to the existence of linear kernels for parameterized problems. In parameterized complexity, each problem instance comes with a parameter k and the parameterized problem is said to admit a linear kernel if there is a polynomial time algorithm, called
Parameterized complexity and approximation algorithms
 Comput. J
, 2006
"... Approximation algorithms and parameterized complexity are usually considered to be two separate ways of dealing with hard algorithmic problems. In this paper, our aim is to investigate how these two fields can be combined to achieve better algorithms than what any of the two theories could offer. We ..."
Abstract

Cited by 56 (2 self)
 Add to MetaCart
(Show Context)
Approximation algorithms and parameterized complexity are usually considered to be two separate ways of dealing with hard algorithmic problems. In this paper, our aim is to investigate how these two fields can be combined to achieve better algorithms than what any of the two theories could offer. We discuss the different ways parameterized complexity can be extended to approximation algorithms, survey results of this type and propose directions for future research. 1.
Subexponential Parameterized Algorithms Collapse the Whierarchy (Extended Abstract)
, 2001
"... It is shown that for essentially all MAX SNPhard optimization problems finding exact solutions in subexponential time is not possible unless W [1] = FPT . In particular, we show that O(2 o(k) p(n)) parameterized algorithms do not exist for Vertex Cover, Max Cut, Max cSat, and a number of pr ..."
Abstract

Cited by 54 (3 self)
 Add to MetaCart
It is shown that for essentially all MAX SNPhard optimization problems finding exact solutions in subexponential time is not possible unless W [1] = FPT . In particular, we show that O(2 o(k) p(n)) parameterized algorithms do not exist for Vertex Cover, Max Cut, Max cSat, and a number of problems on bounded degree graphs such as Dominating Set and Independent Set, unless W [1] = FPT . Our results are derived via an approach that uses an extended parameterization of optimization problems and associated techniques to relate the parameterized complexity of problems in FPT to the parameterized complexity of extended versions that are W [1]hard.