Results 1 - 10
of
201
A Probabilistic Framework for Semi-Supervised Clustering
, 2004
"... Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supe ..."
Abstract
-
Cited by 275 (14 self)
- Add to MetaCart
(Show Context)
Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supervision. Such methods use the constraints to either modify the objective function, or to learn the distance measure. We propose a probabilistic model for semisupervised clustering based on Hidden Markov Random Fields (HMRFs) that provides a principled framework for incorporating supervision into prototype-based clustering. The model generalizes a previous approach that combines constraints and Euclidean distance learning, and allows the use of a broad range of clustering distortion measures, including Bregman divergences (e.g., Euclidean distance and I-divergence) and directional similarity measures (e.g., cosine similarity). We present an algorithm that performs partitional semi-supervised clustering of data by minimizing an objective function derived from the posterior energy of the HMRF model. Experimental results on several text data sets demonstrate the advantages of the proposed framework. 1.
Integrating Constraints and Metric Learning in Semi-Supervised Clustering
- In ICML
, 2004
"... Semi-supervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraint-based methods that guide the clustering algorithm towards a better grouping of the data, and 2) distanc ..."
Abstract
-
Cited by 248 (7 self)
- Add to MetaCart
Semi-supervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraint-based methods that guide the clustering algorithm towards a better grouping of the data, and 2) distance-function learning methods that adapt the underlying similarity metric used by the clustering algorithm. This paper provides new methods for the two approaches as well as presents a new semi-supervised clustering algorithm that integrates both of these techniques in a uniform, principled framework. Experimental results demonstrate that the unified approach produces better clusters than both individual approaches as well as previously proposed semisupervised clustering algorithms.
Clustering with instance-level constraints
- In Proceedings of the Seventeenth International Conference on Machine Learning
, 2000
"... One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningf ..."
Abstract
-
Cited by 206 (7 self)
- Add to MetaCart
(Show Context)
One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningful patterns and trends in large volumes of data, is an important task that falls into this category. Clustering algorithms are a particularly useful group of data analysis tools. These methods are used, for example, to analyze satellite images of the Earth to identify and categorize different land and foliage types or to analyze telescopic observations to determine what distinct types of astronomical bodies exist and to categorize each observation. However, most existing clustering methods apply general similarity techniques rather than making use of problem-specific information. This dissertation first presents a novel method for converting existing clustering algorithms into constrained clustering algorithms. The resulting methods are able to accept domain-specific information in the form of constraints on the output clusters. At the most general level, each constraint is an instance-level statement
Active Semi-Supervision for Pairwise Constrained Clustering
- Proc. 4th SIAM Intl. Conf. on Data Mining (SDM-2004
"... Semi-supervised clustering uses a small amount of supervised data to aid unsupervised learning. One typical approach specifies a limited number of must-link and cannotlink constraints between pairs of examples. This paper presents a pairwise constrained clustering framework and a new method for acti ..."
Abstract
-
Cited by 136 (9 self)
- Add to MetaCart
(Show Context)
Semi-supervised clustering uses a small amount of supervised data to aid unsupervised learning. One typical approach specifies a limited number of must-link and cannotlink constraints between pairs of examples. This paper presents a pairwise constrained clustering framework and a new method for actively selecting informative pairwise constraints to get improved clustering performance. The clustering and active learning methods are both easily scalable to large datasets, and can handle very high dimensional data. Experimental and theoretical results confirm that this active querying of pairwise constraints significantly improves the accuracy of clustering when given a relatively small amount of supervision. 1
Spectral learning
- In IJCAI
, 2003
"... We present a simple, easily implemented spectral learning algorithm which applies equally whether we have no supervisory information, pairwise link constraints, or labeled examples. In the unsupervised case, it performs consistently with other spectral clustering algorithms. In the supervised case, ..."
Abstract
-
Cited by 106 (6 self)
- Add to MetaCart
We present a simple, easily implemented spectral learning algorithm which applies equally whether we have no supervisory information, pairwise link constraints, or labeled examples. In the unsupervised case, it performs consistently with other spectral clustering algorithms. In the supervised case, our approach achieves high accuracy on the categorization of thousands of documents given only a few dozen labeled training documents for the 20 Newsgroups data set. Furthermore, its classification accuracy increases with the addition of unlabeled documents, demonstrating effective use of unlabeled data. By using normalized affinity matrices which are both symmetric and stochastic, we also obtain both a probabilistic interpretation of our method and certain guarantees of performance. 1
Semi-supervised graph clustering: a kernel approach
, 2008
"... Semi-supervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semi-supervised clustering algorithms are designed for data represented as vectors. In this ..."
Abstract
-
Cited by 94 (3 self)
- Add to MetaCart
(Show Context)
Semi-supervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semi-supervised clustering algorithms are designed for data represented as vectors. In this paper, we unify vector-based and graph-based approaches. We first show that a recently-proposed objective function for semi-supervised clustering based on Hidden Markov Random Fields, with squared Euclidean distance and a certain class of constraint penalty functions, can be expressed as a special case of the weighted kernel k-means objective (Dhillon et al., in Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining, 2004a). A recent theoretical connection between weighted kernel k-means and several graph clustering objectives enables us to perform semi-supervised clustering of data given either as vectors or as a graph. For graph data, this result leads to algorithms for optimizing several new semi-supervised graph clustering objectives. For vector data, the kernel approach also enables us to find clusters with non-linear boundaries in the input data space. Furthermore, we show that recent work on spectral learning (Kamvar et al., in Proceedings of the 17th International Joint Conference on Artificial Intelligence, 2003) may be viewed as a special case of our formulation. We empirically show that our algorithm is able to outperform current state-of-the-art semi-supervised algorithms on both vector-based and graph-based data sets.
Person spotting: video shot retrieval for face sets.
- In International Conference on Image and Video Retrieval (CIVR
, 2005
"... ..."
(Show Context)
Clustering with Constraints: Feasibility Issues and the k-Means Algorithm
, 2005
"... Recent work has looked at extending the k-Means algorithm to incorporate background information in the form of instance level must-link and cannot-link constraints. We introduce two ways of specifying additional background information in the form of # and # constraints that operate on all instances ..."
Abstract
-
Cited by 90 (9 self)
- Add to MetaCart
Recent work has looked at extending the k-Means algorithm to incorporate background information in the form of instance level must-link and cannot-link constraints. We introduce two ways of specifying additional background information in the form of # and # constraints that operate on all instances but which can be interpreted as conjunctions or disjunctions of instance level constraints and hence are easy to implement. We present complexity results for the feasibility of clustering under each type of constraint individually and several types together. A key finding is that determining whether there is a feasible solution satisfying all constraints is, in general, NP-complete. Thus, an iterative algorithm such as k-Means should not try to find a feasible partitioning at each iteration. This motivates our derivation of a new version of the k-Means algorithm that minimizes the constrained vector quantization error but at each iteration does not attempt to satisfy all constraints. Using standard UCI datasets, we find that using constraints improves accuracy as others have reported, but we also show that our algorithm reduces the number of iterations until convergence. Finally, we illustrate these benefits and our new constraint types on a complex real world object identification problem using the infra-red detector on an Aibo robot.
Non-Redundant Data Clustering
, 2004
"... Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. In practice this discovery process should avoid redundancies with existing knowledge about class structures or groupings, and reveal novel, previously unknown aspects of the data. In order to de ..."
Abstract
-
Cited by 87 (3 self)
- Add to MetaCart
Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. In practice this discovery process should avoid redundancies with existing knowledge about class structures or groupings, and reveal novel, previously unknown aspects of the data. In order to deal with this problem, we present an extension of the information bottleneck framework, called coordinated conditional information bottleneck, which takes negative relevance information into account by maximizing a conditional mutual information score subject to constraints. Algorithmically, one can apply an alternating optimization scheme that can be used in conjunction with different types of numeric and non-numeric attributes. We present experimental results for applications in text mining and computer vision.
Measuring constraint-set utility for partitional clustering algorithms
- In: Proceedings of the Tenth European Conference on Principles and Practice of Knowledge Discovery in Databases
, 2006
"... Abstract. Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged ..."
Abstract
-
Cited by 49 (5 self)
- Add to MetaCart
(Show Context)
Abstract. Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged over different randomly chosen constraint sets from a given set of labels, thereby masking interesting properties of individual sets. We demonstrate that constraint sets vary significantly in how useful they are for constrained clustering; some constraint sets can actually decrease algorithm performance. We create two quantitative measures, informativeness and coherence, that can be used to identify useful constraint sets. We show that these measures can also help explain differences in performance for four particular constrained clustering algorithms. 1