Results 1 - 10
of
374
Localization of virtual classes
"... We prove a localization formula for the virtual fundamental class in the general context of C∗-equivariant perfect obstruction theories. Let X be an algebraic scheme with a C∗-action and a C∗-equivariant perfect obstruction theory. The virtual fundamental class [X] vir in ..."
Abstract
-
Cited by 258 (36 self)
- Add to MetaCart
(Show Context)
We prove a localization formula for the virtual fundamental class in the general context of C∗-equivariant perfect obstruction theories. Let X be an algebraic scheme with a C∗-action and a C∗-equivariant perfect obstruction theory. The virtual fundamental class [X] vir in
A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations
- J. DIFFERENTIAL GEOM
, 2000
"... We briefly review the formal picture in which a Calabi-Yau n-fold is the complex analogue of an oriented real n-manifold, and a Fano with a fixed smooth anticanonical divisor is the analogue of a manifold with boundary, motivating a holomorphic Casson invariant counting bundles on a Calabi-Yau 3-fol ..."
Abstract
-
Cited by 199 (8 self)
- Add to MetaCart
We briefly review the formal picture in which a Calabi-Yau n-fold is the complex analogue of an oriented real n-manifold, and a Fano with a fixed smooth anticanonical divisor is the analogue of a manifold with boundary, motivating a holomorphic Casson invariant counting bundles on a Calabi-Yau 3-fold. We develop the deformation theory necessary to obtain the virtual moduli cycles of [LT], [BF] in moduli spaces of stable sheaves whose higher obstruction groups vanish. This gives, for instance, virtual moduli cycles in Hilbert schemes of curves in P 3, and Donaldson – and Gromov-Witten – like invariants of Fano 3-folds. It also allows us to define the holomorphic Casson invariant of a Calabi-Yau 3-fold X, prove it is deformation invariant, and compute it explicitly in some examples. Then we calculate moduli spaces of sheaves on a general K3 fibration X, enabling us to compute the invariant for some ranks and Chern classes, and equate it to Gromov-Witten invariants of the “Mukai-dual” 3-fold for others. As an example the invariant is shown to distinguish Gross’ diffeomorphic 3-folds. Finally the Mukai-dual 3-fold is shown to be Calabi-Yau and its cohomology is related to that of X.
Hodge integrals and Gromov-Witten theory
- Invent. Math
"... Let Mg,n be the nonsingular moduli stack of genus g, n-pointed, Deligne-Mumford stable curves. For each marking i, there is an associated cotangent line bundle Li → Mg,n with fiber T ∗ C,pi over the moduli point [C, p1,...,pn]. Let ψi = c1(Li) ∈ H ∗ (Mg,n, Q). The integrals of products of the ψ cla ..."
Abstract
-
Cited by 175 (25 self)
- Add to MetaCart
(Show Context)
Let Mg,n be the nonsingular moduli stack of genus g, n-pointed, Deligne-Mumford stable curves. For each marking i, there is an associated cotangent line bundle Li → Mg,n with fiber T ∗ C,pi over the moduli point [C, p1,...,pn]. Let ψi = c1(Li) ∈ H ∗ (Mg,n, Q). The integrals of products of the ψ classes
Gromov-Witten invariants and quantization of quadratic Hamiltonians
, 2001
"... We describe a formalism based on quantization of quadratic hamiltonians and symplectic actions of loop groups which provides a convenient home for most of known general results and conjectures about Gromov-Witten invariants of compact symplectic manifolds and, more generally, Frobenius structures at ..."
Abstract
-
Cited by 139 (5 self)
- Add to MetaCart
(Show Context)
We describe a formalism based on quantization of quadratic hamiltonians and symplectic actions of loop groups which provides a convenient home for most of known general results and conjectures about Gromov-Witten invariants of compact symplectic manifolds and, more generally, Frobenius structures at higher genus. We state several results illustrating the formalism and its use. In particular, we establish Virasoro constraints for semisimple Frobenius structures and outline a proof of the Virasoro conjecture for Gromov – Witten invariants of complex projective spaces and other Fano toric manifolds. Details will be published elsewhere.