Results 1  10
of
215
Compressed fulltext indexes
 ACM COMPUTING SURVEYS
, 2007
"... Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text l ..."
Abstract

Cited by 263 (94 self)
 Add to MetaCart
Fulltext indexes provide fast substring search over large text collections. A serious problem of these indexes has traditionally been their space consumption. A recent trend is to develop indexes that exploit the compressibility of the text, so that their size is a function of the compressed text length. This concept has evolved into selfindexes, which in addition contain enough information to reproduce any text portion, so they replace the text. The exciting possibility of an index that takes space close to that of the compressed text, replaces it, and in addition provides fast search over it, has triggered a wealth of activity and produced surprising results in a very short time, and radically changed the status of this area in less than five years. The most successful indexes nowadays are able to obtain almost optimal space and search time simultaneously. In this paper we present the main concepts underlying selfindexes. We explain the relationship between text entropy and regularities that show up in index structures and permit compressing them. Then we cover the most relevant selfindexes up to date, focusing on the essential aspects on how they exploit the text compressibility and how they solve efficiently various search problems. We aim at giving the theoretical background to understand and follow the developments in this area.
Replacing suffix trees with enhanced suffix arrays
, 2004
"... The suffix tree is one of the most important data structures in string processing and comparative genomics. However, the space consumption of the suffix tree is a bottleneck in large scale applications such as genome analysis. In this article, we will overcome this obstacle. We will show how every ..."
Abstract

Cited by 207 (10 self)
 Add to MetaCart
The suffix tree is one of the most important data structures in string processing and comparative genomics. However, the space consumption of the suffix tree is a bottleneck in large scale applications such as genome analysis. In this article, we will overcome this obstacle. We will show how every algorithm that uses a suffix tree as data structure can systematically be replaced with an algorithm that uses an enhanced suffix array and solves the same problem in the same time complexity. The generic name enhanced suffix array stands for data structures consisting of the suffix array and additional tables. Our new algorithms are not only more space efficient than previous ones, but they are also faster and easier to implement.
Space efficient linear time construction of suffix arrays
 Journal of Discrete Algorithms
, 2003
"... Abstract. We present a linear time algorithm to sort all the suffixes of a string over a large alphabet of integers. The sorted order of suffixes of a string is also called suffix array, a data structure introduced by Manber and Myers that has numerous applications in pattern matching, string proces ..."
Abstract

Cited by 102 (1 self)
 Add to MetaCart
(Show Context)
Abstract. We present a linear time algorithm to sort all the suffixes of a string over a large alphabet of integers. The sorted order of suffixes of a string is also called suffix array, a data structure introduced by Manber and Myers that has numerous applications in pattern matching, string processing, and computational biology. Though the suffix tree of a string can be constructed in linear time and the sorted order of suffixes derived from it, a direct algorithm for suffix sorting is of great interest due to the space requirements of suffix trees. Our result improves upon the best known direct algorithm for suffix sorting, which takes O(n log n) time. We also show how to construct suffix trees in linear time from our suffix sorting result. Apart from being simple and applicable for alphabets not necessarily of fixed size, this method of constructing suffix trees is more space efficient. 1
Engineering a lightweight suffix array construction algorithm (Extended Abstract)
"... In this paper we consider the problem of computing the suffix array of a text T [1, n]. This problem consists in sorting the suffixes of T in lexicographic order. The suffix array [16] (or pat array [9]) is a simple, easy to code, and elegant data structure used for several fundamental string matchi ..."
Abstract

Cited by 81 (3 self)
 Add to MetaCart
In this paper we consider the problem of computing the suffix array of a text T [1, n]. This problem consists in sorting the suffixes of T in lexicographic order. The suffix array [16] (or pat array [9]) is a simple, easy to code, and elegant data structure used for several fundamental string matching problems involving both linguistic texts and biological data [4, 11]. Recently, the interest in this data structure has been revitalized by its use as a building block for three novel applications: (1) the BurrowsWheeler compression algorithm [3], which is a provably [17] and practically [20] effective compression tool; (2) the construction of succinct [10, 19] and compressed [7, 8] indexes; the latter can store both the input text and its fulltext index using roughly the same space used by traditional compressors for the text alone; and (3) algorithms for clustering and ranking the answers to user queries in websearch engines [22]. In all these applications the construction of the suffix array is the computational bottleneck both in time and space. This motivated our interest in designing yet another suffix array construction algorithm which is fast and "lightweight" in the sense that it uses small space...
A taxonomy of suffix array construction algorithms
 ACM Computing Surveys
, 2007
"... In 1990, Manber and Myers proposed suffix arrays as a spacesaving alternative to suffix trees and described the first algorithms for suffix array construction and use. Since that time, and especially in the last few years, suffix array construction algorithms have proliferated in bewildering abunda ..."
Abstract

Cited by 77 (12 self)
 Add to MetaCart
In 1990, Manber and Myers proposed suffix arrays as a spacesaving alternative to suffix trees and described the first algorithms for suffix array construction and use. Since that time, and especially in the last few years, suffix array construction algorithms have proliferated in bewildering abundance. This survey paper attempts to provide simple highlevel descriptions of these numerous algorithms that highlight both their distinctive features and their commonalities, while avoiding as much as possible the complexities of implementation details. New hybrid algorithms are also described. We provide comparisons of the algorithms ’ worstcase time complexity and use of additional space, together with results of recent experimental test runs on many of their implementations.
Lineartime construction of suffix arrays
 In Proc. 14th Symposium on Combinatorial Pattern Matching (CPM ’03
, 2003
"... Abstract. The time complexity of suffix tree construction has been shown to be equivalent to that of sorting: O(n) for a constantsize alphabet or an integer alphabet and O(n logn) for a general alphabet. However, previous algorithms for constructing suffix arrays have the time complexity of O(n l ..."
Abstract

Cited by 69 (2 self)
 Add to MetaCart
(Show Context)
Abstract. The time complexity of suffix tree construction has been shown to be equivalent to that of sorting: O(n) for a constantsize alphabet or an integer alphabet and O(n logn) for a general alphabet. However, previous algorithms for constructing suffix arrays have the time complexity of O(n logn) even for a constantsize alphabet. In this paper we present a lineartime algorithm to construct suffix arrays for integer alphabets, which do not use suffix trees as intermediate data structures during its construction. Since the case of a constantsize alphabet can be subsumed in that of an integer alphabet, our result implies that the time complexity of directly constructing suffix arrays matches that of constructing suffix trees. 1
Breaking a TimeandSpace Barrier in Constructing FullText Indices
"... Suffix trees and suffix arrays are the most prominent fulltext indices, and their construction algorithms are well studied. It has been open for a long time whether these indicescan be constructed in both o(n log n) time and o(n log n)bit working space, where n denotes the length of the text. Int ..."
Abstract

Cited by 59 (4 self)
 Add to MetaCart
Suffix trees and suffix arrays are the most prominent fulltext indices, and their construction algorithms are well studied. It has been open for a long time whether these indicescan be constructed in both o(n log n) time and o(n log n)bit working space, where n denotes the length of the text. Inthe literature, the fastest algorithm runs in O(n) time, whileit requires O(n log n)bit working space. On the other hand,the most spaceefficient algorithm requires O(n)bit working space while it runs in O(n log n) time. This paper breaks the longstanding timeandspace barrier under the unitcost word RAM. We give an algorithm for constructing the suffix array which takes O(n) time and O(n)bit working space, for texts with constantsize alphabets. Note that both the time and the space bounds are optimal. For constructing the suffix tree, our algorithm requires O(n logffl n) time and O(n)bit working space forany 0! ffl! 1. Apart from that, our algorithm can alsobe adopted to build other existing fulltext indices, such as
Structuring labeled trees for optimal succinctness, and beyond
 In FOCS
, 2005
"... Consider an ordered, static tree T on t nodes where each node has a label from alphabet set Σ. TreeTmaybeofar bitrary degree and of arbitrary shape. Say, we wish to support basic navigational operations such as find the parent of node u,theith child of u, and any child of u with label α. In a semina ..."
Abstract

Cited by 57 (8 self)
 Add to MetaCart
(Show Context)
Consider an ordered, static tree T on t nodes where each node has a label from alphabet set Σ. TreeTmaybeofar bitrary degree and of arbitrary shape. Say, we wish to support basic navigational operations such as find the parent of node u,theith child of u, and any child of u with label α. In a seminal work over fifteen years ago, Jacobson [15] observed that pointerbased tree representations are wasteful in space and introduced the notion of succinct data structures. He studied the special case of unlabeled trees and presented a succinct data structure of 2t+o(t) bits supporting navigational operations in O(1) time. The space used is asymptotically optimal with the informationtheoretic lower bound averaged over all trees. This led to a slew of results on succinct data structures for arrays, trees, strings
Detecting higherlevel similarity patterns in programs
 In ESEC/FSE
, 2005
"... Cloning in software systems is known to create problems during software maintenance. Several techniques have been proposed to detect the same or similar code fragments in software, socalled simple clones. While the knowledge of simple clones is useful, detecting designlevel similarities in softwar ..."
Abstract

Cited by 54 (15 self)
 Add to MetaCart
(Show Context)
Cloning in software systems is known to create problems during software maintenance. Several techniques have been proposed to detect the same or similar code fragments in software, socalled simple clones. While the knowledge of simple clones is useful, detecting designlevel similarities in software could ease maintenance even further, and also help us identify reuse opportunities. We observed that recurring patterns of simple clones – socalled structural clones often indicate the presence of interesting designlevel similarities. An example would be patterns of collaborating classes or components. Finding structural clones that signify potentially useful design information requires efficient techniques to analyze the bulk of simple clone data and making nontrivial inferences based on the abstracted information. In this paper, we describe a practical solution to the problem of
Two space saving tricks for linear time LCP computation
, 2004
"... Abstract. In this paper we consider the linear time algorithm of Kasai et al. [6] for the computation of the Longest Common Prefix (LCP) array given the text and the suffix array. We show that this algorithm can be implemented without any auxiliary array in addition to the ones required for the inpu ..."
Abstract

Cited by 44 (2 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we consider the linear time algorithm of Kasai et al. [6] for the computation of the Longest Common Prefix (LCP) array given the text and the suffix array. We show that this algorithm can be implemented without any auxiliary array in addition to the ones required for the input (the text and the suffix array) and the output (the LCP array). Thus, for a text of length n, we reduce the space occupancy of this algorithm from 13n bytes to 9n bytes. We also consider the problem of computing the LCP array by “overwriting” the suffix array. For this problem we propose an algorithm whose space occupancy can be bounded in terms of the empirical entropy of the input text. Experiments show that for linguistic texts our algorithm uses roughly 7n bytes. Our algorithm makes use of the BurrowsWheeler Transform even if it does not represent any data in compressed form. To our knowledge this is the first application of the BurrowsWheeler Transform outside the domain of data compression. The source code for the algorithms described in this paper has been included in the lightweight suffix sorting package [13] which is freely available under the GNU GPL. 1