Results 1  10
of
263
A taxonomy of suffix array construction algorithms
 ACM Computing Surveys
, 2007
"... In 1990, Manber and Myers proposed suffix arrays as a spacesaving alternative to suffix trees and described the first algorithms for suffix array construction and use. Since that time, and especially in the last few years, suffix array construction algorithms have proliferated in bewildering abunda ..."
Abstract

Cited by 77 (12 self)
 Add to MetaCart
In 1990, Manber and Myers proposed suffix arrays as a spacesaving alternative to suffix trees and described the first algorithms for suffix array construction and use. Since that time, and especially in the last few years, suffix array construction algorithms have proliferated in bewildering abundance. This survey paper attempts to provide simple highlevel descriptions of these numerous algorithms that highlight both their distinctive features and their commonalities, while avoiding as much as possible the complexities of implementation details. New hybrid algorithms are also described. We provide comparisons of the algorithms ’ worstcase time complexity and use of additional space, together with results of recent experimental test runs on many of their implementations.
A new succinct representation of RMQinformation and improvements in the enhanced suffix array
 PROC. ESCAPE. LNCS
, 2007
"... The RangeMinimumQueryProblem is to preprocess an array of length n in O(n) time such that all subsequent queries asking for the position of a minimal element between two specified indices can be obtained in constant time. This problem was first solved by Berkman and Vishkin [1], and Sadakane [2] ..."
Abstract

Cited by 52 (15 self)
 Add to MetaCart
(Show Context)
The RangeMinimumQueryProblem is to preprocess an array of length n in O(n) time such that all subsequent queries asking for the position of a minimal element between two specified indices can be obtained in constant time. This problem was first solved by Berkman and Vishkin [1], and Sadakane [2] gave the first succinct data structure that uses 4n+o(n) bits of additional space. In practice, this method has several drawbacks: it needs O(nlog n) bits of intermediate space when constructing the data structure, and it builds on previous results on succinct data structures. We overcome these problems by giving the first algorithm that never uses more than 2n + o(n) bits, and does not rely on rank and selectqueries or other succinct data structures. We stress the importance of this result by simplifying and reducing the space consumption of the Enhanced Suffix Array [3], while retaining its capability of simulating topdowntraversals of the suffix tree, used, e.g., to locate all occ positions of a pattern p in a text in optimal O(p  + occ) time (assuming constant alphabet size). We further prove a lower bound of 2n − o(n) bits, which makes our algorithm asymptotically optimal.
Fast generation of result snippets in web search
 In Kraaij et al
"... The presentation of query biased document snippets as part of results pages presented by search engines has become an expectation of search engine users. In this paper we explore the algorithms and data structures required as part of a search engine to allow efficient generation of query biased snip ..."
Abstract

Cited by 52 (4 self)
 Add to MetaCart
(Show Context)
The presentation of query biased document snippets as part of results pages presented by search engines has become an expectation of search engine users. In this paper we explore the algorithms and data structures required as part of a search engine to allow efficient generation of query biased snippets. We begin by proposing and analysing a document compression method that reduces snippet generation time by 58 % over a baseline using the zlib compression library. These experiments reveal that finding documents on secondary storage dominates the total cost of generating snippets, and so caching documents in RAM is essential for a fast snippet generation process. Using simulation, we examine snippet generation performance for different size RAM caches. Finally we propose and analyse document reordering and compaction, revealing a scheme that increases the number of document cache hits with only a marginal affect on snippet quality. This scheme effectively doubles the number of documents that can fit in a fixed size cache.
Rank and select revisited and extended
 Workshop on SpaceConscious Algorithms, University of
, 2006
"... The deep connection between the BurrowsWheeler transform (BWT) and the socalled rank and select data structures for symbol sequences is the basis of most successful approaches to compressed text indexing. Rank of a symbol at a given position equals the number of times the symbol appears in the corr ..."
Abstract

Cited by 50 (24 self)
 Add to MetaCart
The deep connection between the BurrowsWheeler transform (BWT) and the socalled rank and select data structures for symbol sequences is the basis of most successful approaches to compressed text indexing. Rank of a symbol at a given position equals the number of times the symbol appears in the corresponding prefix of the sequence. Select is the inverse, retrieving the positions of the symbol occurrences. It has been shown that improvements to rank/select algorithms, in combination with the BWT, turn into improved compressed text indexes. This paper is devoted to alternative implementations and extensions of rank and select data structures. First, we show that one can use gap encoding techniques to obtain constant time rank and select queries in essentially the same space as what is achieved by the best current direct solution (and sometimes less). Second, we extend symbol rank and select to substring rank and select, giving several space/time tradeoffs for the problem. An application of these queries is in positionrestricted substring searching, where one can specify the range in the text where the search is restricted to, and only occurrences residing in that range are to be reported. In addition, arbitrary occurrences are reported in text position order. Several byproducts of our results display connections with searchable partial sums, Chazelle’s twodimensional data structures, and Grossi et al.’s wavelet trees.
Practical rank/select queries over arbitrary sequences
 In Proc. 15th SPIRE, LNCS 5280
, 2008
"... Abstract. We present a practical study on the compact representation of sequences supporting rank, select, and access queries. While there are several theoretical solutions to the problem, only a few have been tried out, and there is little idea on how the others would perform, especially in the cas ..."
Abstract

Cited by 49 (26 self)
 Add to MetaCart
(Show Context)
Abstract. We present a practical study on the compact representation of sequences supporting rank, select, and access queries. While there are several theoretical solutions to the problem, only a few have been tried out, and there is little idea on how the others would perform, especially in the case of sequences with very large alphabets. We first present a new practical implementation of the compressed representation for bit sequences proposed by Raman, Raman, and Rao [SODA 2002], that is competitive with the existing ones when the sequences are not too compressible. It also has nice local compression properties, and we show that this makes it an excellent tool for compressed text indexing in combination with the BurrowsWheeler transform. This shows the practicality of a recent theoretical proposal [Mäkinen and Navarro, SPIRE 2007], achieving spaces never seen before. Second, for general sequences, we tune wavelet trees for the case of very large alphabets, by removing their pointer information. We show that this gives an excellent solution for representing a sequence within zeroorder entropy space, in cases where the large alphabet poses a serious challenge to typical encoding methods. We also present the first implementation of Golynski et al.’s representation [SODA 2006], which offers another interesting time/space tradeoff. 1
SpaceEfficient Preprocessing Schemes for Range Minimum Queries on Static Arrays
, 2009
"... Given a static array of n totally ordered object, the range minimum query problem is to build an additional data structure that allows to answer subsequent online queries of the form “what is the position of a minimum element in the subarray ranging from i to j? ” efficiently. We focus on two sett ..."
Abstract

Cited by 47 (3 self)
 Add to MetaCart
(Show Context)
Given a static array of n totally ordered object, the range minimum query problem is to build an additional data structure that allows to answer subsequent online queries of the form “what is the position of a minimum element in the subarray ranging from i to j? ” efficiently. We focus on two settings, where (1) the input array is available at query time, and (2) the input array is only available at construction time. In setting (1), we show new data structures (a) of n c(n) (2 + o(1)) bits and query time O(c(n)), or (b) with O(nHk) + o(n) bits and O(1) query size time, where Hk denotes the empirical entropy of k’th order of the input array. In setting (2), we give a data structure of optimal size 2n + o(n) bits and query time O(1). All data structures can be constructed in linear time and almost inplace.
A simple storage scheme for strings achieving entropy bounds
, 2007
"... We propose a storage scheme for a string S[1, n], drawn from an alphabet Σ, that requires space close to the kth order empirical entropy of S, and allows to retrieve any ℓlong substring of S in optimal O(1 + ..."
Abstract

Cited by 46 (6 self)
 Add to MetaCart
(Show Context)
We propose a storage scheme for a string S[1, n], drawn from an alphabet Σ, that requires space close to the kth order empirical entropy of S, and allows to retrieve any ℓlong substring of S in optimal O(1 +
Spaceefficient algorithms for document retrieval
 IN PROC. CPM, VOLUME 4580 OF LNCS
, 2007
"... We study the Document Listing problem, where a collection D of documents d1,..., dk of total length � di = n is to be prei processed, so that one can later efficiently list all the ndoc documents containing a given query pattern P of length m as a substring. Muthukrishnan (SODA 2002) gave an opti ..."
Abstract

Cited by 45 (2 self)
 Add to MetaCart
We study the Document Listing problem, where a collection D of documents d1,..., dk of total length � di = n is to be prei processed, so that one can later efficiently list all the ndoc documents containing a given query pattern P of length m as a substring. Muthukrishnan (SODA 2002) gave an optimal solution to the problem; with O(n) time preprocessing, one can answer the queries in O(m + ndoc) time. In this paper, we improve the spacerequirement of the Muthukrishnan’s solution from O(nlog n) bits to CSA  + 2n + nlog k(1 + o(1)) bits, where CSA  ≤ nlog Σ(1 + o(1)) is the size of any suitable compressed suffix array (CSA), and Σ is the underlying alphabet of documents. The time requirement depends on the CSA used, but we can obtain e.g. the optimal O(m+ndoc) time when Σ, k = O(polylog(n)). For general Σ, k the time requirement becomes O(m log Σ  + ndoc log k). Sadakane (ISAAC
SpaceEfficient Framework for Topk String Retrieval Problems
"... Given a set D = {d1, d2,..., dD} of D strings of total length n, our task is to report the “most relevant” strings for a given query pattern P. This involves somewhat more advanced query functionality than the usual pattern matching, as some notion of “most relevant” is involved. In information retr ..."
Abstract

Cited by 40 (8 self)
 Add to MetaCart
Given a set D = {d1, d2,..., dD} of D strings of total length n, our task is to report the “most relevant” strings for a given query pattern P. This involves somewhat more advanced query functionality than the usual pattern matching, as some notion of “most relevant” is involved. In information retrieval literature, this task is best achieved by using inverted indexes. However, inverted indexes work only for some predefined set of patterns. In the pattern matching community, the most popular patternmatching data structures are suffix trees and suffix arrays. However, a typical suffix tree search involves going through all the occurrences of the pattern over the entire string collection, which might be a lot more than the required relevant documents. The first formal framework to study such kind of retrieval problems was given by Muthukrishnan [25]. He considered two metrics for relevance: frequency and proximity. He took a thresholdbased approach on these metrics and gave data structures taking O(n log n) words of space. We study this problem in a slightly different framework of reporting the top k most relevant documents (in sorted order) under similar and more general relevance metrics. Our framework gives linear space data structure with optimal query times for arbitrary score functions. As a corollary, it improves the space utilization for the problems in [25] while maintaining optimal query performance. We also develop compressed variants of these data structures for several specific relevance metrics.