Results 1 - 10
of
347
Distributed representations of words and phrases and their compositionality
- IN ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2013
"... ..."
Word representations: A simple and general method for semi-supervised learning
- IN ACL
, 2010
"... If we take an existing supervised NLP system, a simple and general way to improve accuracy is to use unsupervised word representations as extra word features. We evaluate Brown clusters, Collobert and Weston (2008) embeddings, and HLBL (Mnih & Hinton, 2009) embeddings of words on both NER and ch ..."
Abstract
-
Cited by 232 (3 self)
- Add to MetaCart
If we take an existing supervised NLP system, a simple and general way to improve accuracy is to use unsupervised word representations as extra word features. We evaluate Brown clusters, Collobert and Weston (2008) embeddings, and HLBL (Mnih & Hinton, 2009) embeddings of words on both NER and chunking. We use near state-of-the-art supervised baselines, and find that each of the three word representations improves the accuracy of these baselines. We find further improvements by combining different word representations. You can download our word features, for off-the-shelf use in existing NLP systems, as well as our code, here:
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
"... Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of compo ..."
Abstract
-
Cited by 191 (7 self)
- Add to MetaCart
Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compositionality. To address them, we introduce the Recursive Neural Tensor Network. When trained on the new treebank, this model outperforms all previous methods on several metrics. It pushes the state of the art in single sentence positive/negative classification from 80 % up to 85.4%. The accuracy of predicting fine-grained sentiment labels for all phrases reaches 80.7%, an improvement of 9.7 % over bag of features baselines. Lastly, it is the only model that can accurately capture the effects of negation and its scope at various tree levels for both positive and negative phrases. 1
Semantic Compositionality through Recursive Matrix-Vector Spaces
"... Single-word vector space models have been very successful at learning lexical information. However, they cannot capture the compositional meaning of longer phrases, preventing them from a deeper understanding of language. We introduce a recursive neural network (RNN) model that learns compositional ..."
Abstract
-
Cited by 183 (11 self)
- Add to MetaCart
(Show Context)
Single-word vector space models have been very successful at learning lexical information. However, they cannot capture the compositional meaning of longer phrases, preventing them from a deeper understanding of language. We introduce a recursive neural network (RNN) model that learns compositional vector representations for phrases and sentences of arbitrary syntactic type and length. Our model assigns a vector and a matrix to every node in a parse tree: the vector captures the inherent meaning of the constituent, while the matrix captures how it changes the meaning of neighboring words or phrases. This matrix-vector RNN can learn the meaning of operators in propositional logic and natural language. The model obtains state of the art performance on three different experiments: predicting fine-grained sentiment distributions of adverb-adjective pairs; classifying sentiment labels of movie reviews and classifying semantic relationships such as cause-effect or topic-message between nouns using the syntactic path between them. 1
Distributed Representations of Sentences and Documents
- In NAACL HLT
"... Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the order-ing of the words ..."
Abstract
-
Cited by 93 (1 self)
- Add to MetaCart
(Show Context)
Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the order-ing of the words and they also ignore semantics of the words. For example, “powerful, ” “strong” and “Paris ” are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algo-rithm that learns fixed-length feature representa-tions from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algo-rithm represents each document by a dense vec-tor which is trained to predict words in the doc-ument. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Para-graph Vectors outperform bag-of-words models as well as other techniques for text representa-tions. Finally, we achieve new state-of-the-art re-sults on several text classification and sentiment analysis tasks. 1.
Learning Word Vectors for Sentiment Analysis
"... Unsupervised vector-based approaches to semantics can model rich lexical meanings, but they largely fail to capture sentiment information that is central to many word meanings and important for a wide range of NLP tasks. We present a model that uses a mix of unsupervised and supervised techniques to ..."
Abstract
-
Cited by 88 (2 self)
- Add to MetaCart
(Show Context)
Unsupervised vector-based approaches to semantics can model rich lexical meanings, but they largely fail to capture sentiment information that is central to many word meanings and important for a wide range of NLP tasks. We present a model that uses a mix of unsupervised and supervised techniques to learn word vectors capturing semantic term–document information as well as rich sentiment content. The proposed model can leverage both continuous and multi-dimensional sentiment information as well as non-sentiment annotations. We instantiate the model to utilize the document-level sentiment polarity annotations present in many online documents (e.g. star ratings). We evaluate the model using small, widely used sentiment and subjectivity corpora and find it out-performs several previously introduced methods for sentiment classification. We also introduce a large dataset of movie reviews to serve as a more robust benchmark for work in this area. recognition, part of speech tagging, and document retrieval (Turney and Pantel, 2010; Collobert and Weston, 2008; Turian et al., 2010). In this paper, we present a model to capture both semantic and sentiment similarities among words. The semantic component of our model learns word vectors via an unsupervised probabilistic model of documents. However, in keeping with linguistic and cognitive research arguing that expressive content and descriptive semantic content are distinct (Kaplan, 1999; Jay, 2000; Potts, 2007), we find that this basic model misses crucial sentiment information. For example, while it learns that wonderful and amazing are semantically close, it doesn’t capture the fact that these are both very strong positive sentiment words, at the opposite end of the spectrum from terrible and awful. Thus, we extend the model with a supervised sentiment component that is capable of embracing many social and attitudinal aspects of meaning (Wilson
Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space
"... We propose an approach to adjective-noun composition (AN) for corpus-based distributional semantics that, building on insights from theoretical linguistics, represents nouns as vectors and adjectives as data-induced (linear) functions (encoded as matrices) over nominal vectors. Our model significant ..."
Abstract
-
Cited by 88 (23 self)
- Add to MetaCart
We propose an approach to adjective-noun composition (AN) for corpus-based distributional semantics that, building on insights from theoretical linguistics, represents nouns as vectors and adjectives as data-induced (linear) functions (encoded as matrices) over nominal vectors. Our model significantly outperforms the rivals on the task of reconstructing AN vectors not seen in training. A small post-hoc analysis further suggests that, when the model-generated AN vector is not similar to the corpus-observed AN vector, this is due to anomalies in the latter. We show moreover that our approach provides two novel ways to represent adjective meanings, alternative to its representation via corpus-based co-occurrence vectors, both outperforming the latter in an adjective clustering task. 1
Grounded compositional semantics for finding and describing images with sentences. Transactions of the Association for Computational Linguistics.
, 2014
"... Abstract Previous work on Recursive Neural Networks (RNNs) shows that these models can produce compositional feature vectors for accurately representing and classifying sentences or images. However, the sentence vectors of previous models cannot accurately represent visually grounded meaning. We in ..."
Abstract
-
Cited by 67 (8 self)
- Add to MetaCart
(Show Context)
Abstract Previous work on Recursive Neural Networks (RNNs) shows that these models can produce compositional feature vectors for accurately representing and classifying sentences or images. However, the sentence vectors of previous models cannot accurately represent visually grounded meaning. We introduce the DT-RNN model which uses dependency trees to embed sentences into a vector space in order to retrieve images that are described by those sentences. Unlike previous RNN-based models which use constituency trees, DT-RNNs naturally focus on the action and agents in a sentence. They are better able to abstract from the details of word order and syntactic expression. DT-RNNs outperform other recursive and recurrent neural networks, kernelized CCA and a bag-of-words baseline on the tasks of finding an image that fits a sentence description and vice versa. They also give more similar representations to sentences that describe the same image.
A Survey of Paraphrasing and Textual Entailment Methods
, 2010
"... Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads ( ..."
Abstract
-
Cited by 57 (3 self)
- Add to MetaCart
Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.
Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors.
- In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
, 2014
"... Abstract Context-predicting models (more commonly known as embeddings or neural language models) are the new kids on the distributional semantics block. Despite the buzz surrounding these models, the literature is still lacking a systematic comparison of the predictive models with classic, count-ve ..."
Abstract
-
Cited by 42 (1 self)
- Add to MetaCart
(Show Context)
Abstract Context-predicting models (more commonly known as embeddings or neural language models) are the new kids on the distributional semantics block. Despite the buzz surrounding these models, the literature is still lacking a systematic comparison of the predictive models with classic, count-vector-based distributional semantic approaches. In this paper, we perform such an extensive evaluation, on a wide range of lexical semantics tasks and across many parameter settings. The results, to our own surprise, show that the buzz is fully justified, as the context-predicting models obtain a thorough and resounding victory against their count-based counterparts.