Results 11  20
of
492
Monotone Real Sequences. Subsequences
"... this paper. We follow the rules: n, m, k are natural numbers, r is a real number, and s 1 , s 2 , s 3 are sequences of real numbers. Let s 1 be a partial function from N to R. We say that s 1 is increasing if and only if: (Def. 1) For every n holds s 1 (n) ! s 1 (n + 1): We say that s 1 is decreasin ..."
Abstract

Cited by 96 (9 self)
 Add to MetaCart
this paper. We follow the rules: n, m, k are natural numbers, r is a real number, and s 1 , s 2 , s 3 are sequences of real numbers. Let s 1 be a partial function from N to R. We say that s 1 is increasing if and only if: (Def. 1) For every n holds s 1 (n) ! s 1 (n + 1): We say that s 1 is decreasing if and only if: (Def. 2) For every n holds s 1 (n + 1) ! s 1 (n): We say that s 1 is nondecreasing if and only if: (Def. 3) For every n holds s 1 (n) s 1 (n + 1): We say that s 1 is nonincreasing if and only if: (Def. 4) For every n holds s 1 (n + 1) s 1 (n): Let f be a function. We say that f is constant if and only if: (Def. 5) For all sets n 1 , n 2 such that n 1 2 dom f and n 2 2 domf holds f(n 1 ) = f(n 2 ): Let us consider s 1 . Let us observe that s 1 is constant if and only if: (Def. 6) There exists r such that for every n holds s 1 (n) = r:
Combining of Circuits
, 2002
"... this paper. 1. COMBINING OF MANY SORTED SIGNATURES Let S be a many sorted signature. A gate of S is an element of the operation symbols of S ..."
Abstract

Cited by 93 (25 self)
 Add to MetaCart
this paper. 1. COMBINING OF MANY SORTED SIGNATURES Let S be a many sorted signature. A gate of S is an element of the operation symbols of S
Boolean posets, posets under inclusion and products of relational structures
 Journal of Formalized Mathematics
, 1996
"... Summary. In the paper some notions useful in formalization of [11] are introduced, e.g. the definition of the poset of subsets of a set with inclusion as an ordering relation. Using the theory of many sorted sets authors formulate the definition of product of relational structures. ..."
Abstract

Cited by 84 (17 self)
 Add to MetaCart
(Show Context)
Summary. In the paper some notions useful in formalization of [11] are introduced, e.g. the definition of the poset of subsets of a set with inclusion as an ordering relation. Using the theory of many sorted sets authors formulate the definition of product of relational structures.
Binary operations applied to finite sequences.
 Formalized Mathematics,
, 1990
"... ..."
(Show Context)
Homomorphisms of many sorted algebras
 Journal of Formalized Mathematics
, 1994
"... ..."
(Show Context)
Cartesian product of functions
 Journal of Formalized Mathematics
, 1991
"... Summary. A supplement of [3] and [2], i.e. some useful and explanatory properties of the product and also the curried and uncurried functions are shown. Besides, the functions yielding functions are considered: two different products and other operation of such functions are introduced. Finally, two ..."
Abstract

Cited by 64 (22 self)
 Add to MetaCart
(Show Context)
Summary. A supplement of [3] and [2], i.e. some useful and explanatory properties of the product and also the curried and uncurried functions are shown. Besides, the functions yielding functions are considered: two different products and other operation of such functions are introduced. Finally, two facts are presented: quasidistributivity of the power of the set to other one w.r.t. the union (X � x f (x) ≈ ∏x X f (x) ) and quasidistributivity of the product w.r.t. the raising to the power (∏x f (x) X ≈ (∏x f (x)) X).
On the Decomposition of the States of SCM
, 1993
"... This article continues the development of the basic terminology ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
This article continues the development of the basic terminology