Results 1 - 10
of
749
Wireless sensor networks: a survey
, 2002
"... This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of fact ..."
Abstract
-
Cited by 2008 (23 self)
- Add to MetaCart
(Show Context)
This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are
A Survey on Sensor Networks
, 2002
"... Recent advancement in wireless communica- tions and electronics has enabled the develop- ment of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that research ..."
Abstract
-
Cited by 2002 (1 self)
- Add to MetaCart
Recent advancement in wireless communica- tions and electronics has enabled the develop- ment of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.
Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks
- ACM Wireless Networks Journal
, 2001
"... ..."
(Show Context)
Routing Techniques in Wireless Sensor Networks: A Survey
- IEEE WIRELESS COMMUNICATIONS
, 2004
"... Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, howeve ..."
Abstract
-
Cited by 741 (2 self)
- Add to MetaCart
(Show Context)
Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, however, has been given to the routing protocols which might differ depending on the application and network architecture. In this paper, we present a survey of the state-of-the-art routing techniques in WSNs. We first outline the design challenges for routing protocols in WSNs followed by a comprehensive survey of different routing techniques. Overall, the routing techniques are classified into three categories based on the underlying network structure: flat, hierarchical, and location-based routing. Furthermore, these protocols can be classified into multipath-based, query-based, negotiation-based, QoS-based, and coherent-based depending on the protocol operation. We study the design tradeoffs between energy and communication overhead savings in every routing paradigm. We also highlight the advantages and performance issues of each routing technique. The paper concludes with possible future research areas.
Energy Conserving Routing in Wireless Ad-hoc Networks
, 2000
"... An ad-hoc network of wireless static nodes is considered as it arises in a rapidly deployed, sensor based, monitoring system. Information is generated in certain nodes and needs to reach a set of designated gateway nodes. Each node may adjust its power within a certain range that determines the set ..."
Abstract
-
Cited by 622 (2 self)
- Add to MetaCart
(Show Context)
An ad-hoc network of wireless static nodes is considered as it arises in a rapidly deployed, sensor based, monitoring system. Information is generated in certain nodes and needs to reach a set of designated gateway nodes. Each node may adjust its power within a certain range that determines the set of possible one hop away neighbors. Traffic forwarding through multiple hops is employed when the intended destination is not within immediate reach. The nodes have limited initial amounts of energy that is consumed in different rates depending on the power level and the intended receiver. We propose algorithms to select the routes and the corresponding power levels such that the time until the batteries of the nodes drain-out is maximized. The algorithms are local and amenable to distributed implementation. When there is a single power level, the problem is reduced to a maximum flow problem with node capacities and the algorithms converge to the optimal solution. When there are multiple power levels then the achievable lifetime is close to the optimal (that is computed by linear programming) most of the time. It turns out that in order to maximize the lifetime, the traffic should be routed such that the energy consumption is balanced among the nodes in proportion to their energy reserves, instead of routing to minimize the absolute consumed power.
Distributed topology control for power efficient operation in multihop wireless ad hoc networks
, 2001
"... Abstract — The topology of wireless multihop ad hoc networks can be controlled by varying the transmission power of each node. We propose a simple distributed algorithm where each node makes local decisions about its transmission power and these local decisions collectively guarantee global connecti ..."
Abstract
-
Cited by 383 (18 self)
- Add to MetaCart
(Show Context)
Abstract — The topology of wireless multihop ad hoc networks can be controlled by varying the transmission power of each node. We propose a simple distributed algorithm where each node makes local decisions about its transmission power and these local decisions collectively guarantee global connectivity. Specifically, based on the directional information, a node grows it transmission power until it finds a neighbor node in every direction. The resulting network topology increases network lifetime by reducing transmission power and reduces traffic interference by having low node degrees. Moreover, we show that the routes in the multihop network are efficient in power consumption. We give an approximation scheme in which the power consumption of each route can be made arbitrarily close to the optimal by carefully choosing the parameters. Simulation results demonstrate significant performance improvements. I.
Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad Hoc Networks
, 2001
"... Most ad hoc mobile devices today operate on batteries. Hence, power consumption becomes an important issue. To maximize the lifetime of ad hoc mobile networks, the power consumption rate of each node must be evenly distributed, and the overall transmission power for each connection request mus ..."
Abstract
-
Cited by 338 (0 self)
- Add to MetaCart
Most ad hoc mobile devices today operate on batteries. Hence, power consumption becomes an important issue. To maximize the lifetime of ad hoc mobile networks, the power consumption rate of each node must be evenly distributed, and the overall transmission power for each connection request must be minimized. These two objectives cannot be satisfied simultaneously by employing routing algorithms proposed in previous work. In this article we present a new power-aware routing protocol to satisfy these two constraints simultaneously; we also compare the performance of different types of power-related routing algorithms via simulation. Simulation results confirm the need to strike a balance in attaining service availability performance of the whole network vs. the lifetime of ad hoc mobile devices.
Capacity bounds and power allocation for wireless relay channels
- IEEE TRANS. INF. THEORY
, 2005
"... We consider three-node wireless relay channels in a Rayleigh-fading environment. Assuming transmitter channel state information (CSI), we study upper bounds and lower bounds on the outage capacity and the ergodic capacity. Our studies take into account practical constraints on the transmission/rece ..."
Abstract
-
Cited by 324 (6 self)
- Add to MetaCart
We consider three-node wireless relay channels in a Rayleigh-fading environment. Assuming transmitter channel state information (CSI), we study upper bounds and lower bounds on the outage capacity and the ergodic capacity. Our studies take into account practical constraints on the transmission/reception duplexing at the relay node and on the synchronization between the source node and the relay node. We also explore power allocation. Compared to the direct transmission and traditional multihop protocols, our results reveal that optimum relay channel signaling can significantly outperform multihop protocols, and that power allocation has a significant impact on the performance.
Mobile ad hoc networking: imperatives and challenges
, 2003
"... Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-exi ..."
Abstract
-
Cited by 317 (8 self)
- Add to MetaCart
Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET's characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future.