Results 1 - 10
of
99
A line in the sand: a wireless sensor network for target detection, classification, and tracking
- COMPUTER NETWORKS
, 2004
"... Intrusion detection is a surveillance problem of practical import that is well suited to wireless sensor networks. In this paper, we study the application of sensor networks to the intrusion detection problem and the related problems of classifying and tracking targets. Our approach is based on a de ..."
Abstract
-
Cited by 272 (41 self)
- Add to MetaCart
(Show Context)
Intrusion detection is a surveillance problem of practical import that is well suited to wireless sensor networks. In this paper, we study the application of sensor networks to the intrusion detection problem and the related problems of classifying and tracking targets. Our approach is based on a dense, distributed, wireless network of multi-modal resource-poor sensors combined into loosely coherent sensor arrays that perform in situ detection, estimation, compression, and exfiltration. We ground our study in the context of a security scenario called ‘‘A Line in the Sand’ ’ and accordingly define the target, system, environment, and fault models. Based on the performance requirements of the scenario and the sensing, communication, energy, and computation ability of the sensor network, we explore the design space of sensors, signal processing algorithms, communications, networking, and middleware services. We introduce the influence field, which can be estimated from a network of binary sensors, as the basis for a novel classifier. A contribution of our work is that we do not assume a reliable network; on the contrary, we quantitatively analyze the effects of network unreliability on application performance. Our work includes multiple experimental deployments of over 90
Integrated coverage and connectivity configuration for energy conservation in sensor networks
- ACM Transactions on Sensor Networks
, 2005
"... An effective approach for energy conservation in wireless sensor networks is scheduling sleep intervals for extraneous nodes, while the remaining nodes stay active to provide continuous service. For the sensor network to operate successfully, the active nodes must maintain both sensing coverage and ..."
Abstract
-
Cited by 132 (11 self)
- Add to MetaCart
An effective approach for energy conservation in wireless sensor networks is scheduling sleep intervals for extraneous nodes, while the remaining nodes stay active to provide continuous service. For the sensor network to operate successfully, the active nodes must maintain both sensing coverage and network connectivity. Furthermore, the network must be able to configure itself to any feasible degrees of coverage and connectivity in order to support different applications and environments with diverse requirements. This paper presents the design and analysis of novel protocols that can dynamically configure a network to achieve guaranteed degrees of coverage and connectivity. This work differs from existing connectivity or coverage maintenance protocols in several key ways: 1) We present a Coverage Configuration Protocol (CCP) that can provide different degrees of coverage requested by applications. This flexibility allows the network to self-configure for a wide range of applications and (possibly dynamic) environments. 2) We provide a geometric analysis of the relationship between coverage and connectivity. This analysis yields key insights for treating coverage and connectivity within a unified framework: this is in sharp contrast to several existing approaches that address the two problems in isolation. 3) We integrate CCP with SPAN to provide both coverage and connectivity guarantees. 4) We propose a probabilistic coverage model and extend CCP to provide probabilistic coverage guarantees. We demonstrate the capability of our protocols to provide guaranteed coverage and connectivity configurations, through both geometric analysis and extensive simulations.
Micro-Blog: Sharing and Querying Content Through Mobile Phones and Social Participation
- In Proc. ACM 6th Int’l Conf. on Mobile Systems, Applications, and Services (MOBISYS ’08
, 2008
"... Recent years have witnessed the impacts of distributed content sharing (Wikipedia, Blogger), social networks (Facebook, MySpace), sensor networks, and pervasive computing. We believe that significant more impact is latent in the convergence of these ideas on the mobile phone platform. Phones can be ..."
Abstract
-
Cited by 124 (13 self)
- Add to MetaCart
(Show Context)
Recent years have witnessed the impacts of distributed content sharing (Wikipedia, Blogger), social networks (Facebook, MySpace), sensor networks, and pervasive computing. We believe that significant more impact is latent in the convergence of these ideas on the mobile phone platform. Phones can be envisioned as people-centric sensors capable of aggregating participatory as well as sensory inputs from local surroundings. The inputs can be visualized in different dimensions, such as space and time. When plugged into the Internet, the collaborative inputs from phones may enable a high resolution view of the world. This paper presents the architecture and implementation of one such system, called Micro-Blog. New kinds of application-driven challenges are identified and addressed in the context of this system. Implemented on Nokia N95 mobile phones, Micro-Blog was distributed to volunteers for real life use. Promising feedback suggests that Micro-Blog can be a deployable tool for sharing, browsing, and querying global information.
Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling
- IEEE TRANSACTIONS ON AUTOMATIC CONTROL
, 2010
"... The goal of decentralized optimization over a network is to optimize a global objective formed by a sum of local (possibly nonsmooth) convex functions using only local computation and communication. It arises in various application domains, including distributed tracking and localization, multiagen ..."
Abstract
-
Cited by 97 (12 self)
- Add to MetaCart
The goal of decentralized optimization over a network is to optimize a global objective formed by a sum of local (possibly nonsmooth) convex functions using only local computation and communication. It arises in various application domains, including distributed tracking and localization, multiagent co-ordination, estimation in sensor networks, and largescale machine learning. We develop and analyze distributed algorithms based on dual subgradient averaging, and we provide sharp bounds on their convergence rates as a function of the network size and topology. Our analysis allows us to clearly separate the convergence of the optimization algorithm itself and the effects of communication dependent on the network structure. We show that the number of iterations required by our algorithm scales inversely in the spectral gap of the network and confirm this prediction’s sharpness both by theoretical lower bounds and simulations for various networks. Our approach includes the cases of deterministic optimization and communication as well as problems with stochastic optimization and/or communication.
Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection
- International Journal of Robotics Research
, 2006
"... We describe the design and experimental validation of a large heterogeneous mobile robot team built for the DARPA Software for Distributed Robotics (SDR) program. The core challenge for the SDR program was to develop a multi-robot system capable of carrying out a specific mission: to deploy a large ..."
Abstract
-
Cited by 77 (11 self)
- Add to MetaCart
(Show Context)
We describe the design and experimental validation of a large heterogeneous mobile robot team built for the DARPA Software for Distributed Robotics (SDR) program. The core challenge for the SDR program was to develop a multi-robot system capable of carrying out a specific mission: to deploy a large number of robots into an unexplored building, map the building interior, detect and track intruders, and transmit all of the above information to a remote operator. To satisfy these requirements, we developed a heterogeneous robot team consisting of approximately 80 robots. We sketch the key technical elements of this team, focusing on the novel aspects, and present selected results from supervised experiments conducted in a 600 m 2 indoor environment. 1
Spatiotemporal Multicast in Sensor Networks
- IN SENSYS
, 2003
"... Sensor networks often involve the monitoring of mobile phenomena, which can be facilitated by a spatiotemporal multicast protocol we call "mobicast". Mobicast is a novel spatiotemporal multicast protocol featuring a delivery zone that evolves over time. Mobicast can in theory provide ab ..."
Abstract
-
Cited by 65 (7 self)
- Add to MetaCart
Sensor networks often involve the monitoring of mobile phenomena, which can be facilitated by a spatiotemporal multicast protocol we call "mobicast". Mobicast is a novel spatiotemporal multicast protocol featuring a delivery zone that evolves over time. Mobicast can in theory provide absolute spatiotemporal delivery guarantees by limiting communication to a mobile forwarding zone whose size is determined by the global worst-case value associated with a compactness metric defined over the geometry of the network.In this work, we first studied the compactness properties of sensor networks with uniform distribution. The results of this study motivate three approaches for improving the e#ciency of spatiotemporal multicast in such networks. First, one may achieve high savings on communication overhead by slightly relaxing spatiotemporal delivery guarantees. Second, spatiotemporal multicast may exploit local compactness values for higher e#ciency for networks with non uniform spatial distribution of compactness. Third, for random uniformly distributed sensor network deployment, one may choose a deployment density to best support spatiotemporal communication. We also explored all these directions via mobicast simulation and results are presented in this paper.
A synchronized quorum of genetic clocks
- Nature
, 2010
"... The engineering of genetic circuits with predictive functionality in living cells represents a defining focus of the expanding field of synthetic biology. This focus was elegantly set in motion a decade ago with the design and construction of a genetic toggle switch and an oscillator, with subsequen ..."
Abstract
-
Cited by 51 (5 self)
- Add to MetaCart
The engineering of genetic circuits with predictive functionality in living cells represents a defining focus of the expanding field of synthetic biology. This focus was elegantly set in motion a decade ago with the design and construction of a genetic toggle switch and an oscillator, with subsequent highlights that have included circuits capable of pattern generation, noise shaping, edge detection, and event counting. Here, we describe an engineered gene network with global intercellular coupling that is capable of generating synchronized oscillations in a growing population of cells. Using microfluidic devices tailored for cellular populations at differing length scales, we investigate the collective synchronization properties along with spatiotemporal waves occurring on millimeter scales. We use computational modeling to quantitatively describe the observed dependence of the period and amplitude of the bulk oscillations on the flow rate. The synchronized genetic clock sets the stage for the use of microbes in the creation of a macroscopic biosensor with an oscillatory output. In addition, it provides a specific model system for the generation of a mechanistic description of emergent coordinated behavior at the colony level. Synchronized clocks are of fundamental importance in the coordination of rhythmic
On Greedy Geographic Routing Algorithms in Sensing-Covered Networks
- IN PROCEEDINGS OF MOBIHOC ’04
, 2004
"... Greedy geographic routing is attractive in wireless sensor networks due to its efficiency and scalability. However, greedy geographic routing may incur long routing paths or even fail due to routing voids on random network topologies. We study greedy geographic routing in an important class of wire ..."
Abstract
-
Cited by 51 (3 self)
- Add to MetaCart
(Show Context)
Greedy geographic routing is attractive in wireless sensor networks due to its efficiency and scalability. However, greedy geographic routing may incur long routing paths or even fail due to routing voids on random network topologies. We study greedy geographic routing in an important class of wireless sensor networks that provide sensing coverage over a geographic area (e.g., surveillance or object tracking systems). Our geometric analysis and simulation results demonstrate that existing greedy geographic routing algorithms can successfully find short routing paths based on local states in sensing-covered networks. In particular, we derive theoretical upper bounds on the network dilation of sensing-covered networks under greedy geographic routing algorithms. Furthermore, we propose a new greedy geographic routing algorithm called Bounded Voronoi Greedy Forwarding (BVGF) that allows sensing-covered networks to achieve an asymptotic network dilation lower than 4.62 as long as the communication range is at least twice the sensing range. Our results show that simple greedy geographic routing is an effective routing scheme in many sensing-covered networks.
Coverage and connectivity in three-dimensional networks
- PROCEEDINGS OF THE 12TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING
, 2006
"... Although most wireless terrestrial networks are based on two-dimensional (2D) design, in reality, such networks operate in three-dimensions (3D). Since most often the size (i.e., the length and the width) of such terrestrial networks is significantly larger than the differences in the third dimensio ..."
Abstract
-
Cited by 46 (0 self)
- Add to MetaCart
Although most wireless terrestrial networks are based on two-dimensional (2D) design, in reality, such networks operate in three-dimensions (3D). Since most often the size (i.e., the length and the width) of such terrestrial networks is significantly larger than the differences in the third dimension (i.e., the height) of the nodes, the 2D assumption is somewhat justified and usually it does not lead to major inaccuracies. However, in some environments, this is not the case; the underwater, atmospheric, or space communications being such apparent examples. In fact, recent interest in underwater acoustic ad hoc and sensor networks hints at the need to understand how to design networks in 3D. Unfortunately, the design of 3D networks is surprisingly more difficult than the design of 2D networks. For example, proofs of Kelvin's conjecture and Kepler's conjecture required centuries of research to achieve breakthroughs, whereas their
Extremal properties of three-dimensional sensor networks with applications
- IEEE Transactions on Mobile Computing
"... In this paper, we analyze various critical transmitting/sensing ranges for connectivity and coverage in three-dimensional sensor networks. As in other large-scale complex systems, many global parameters of sensor networks undergo phase transitions: For a given property of the network, there is a cri ..."
Abstract
-
Cited by 44 (3 self)
- Add to MetaCart
In this paper, we analyze various critical transmitting/sensing ranges for connectivity and coverage in three-dimensional sensor networks. As in other large-scale complex systems, many global parameters of sensor networks undergo phase transitions: For a given property of the network, there is a critical threshold, corresponding to the minimum amount of the communication effort or power expenditure by individual nodes, above (resp. below) which the property exists with high (resp. a low) probability. For sensor networks, properties of interest include simple and multiple degrees of connectivity/coverage. First, we investigate the network topology according to the region of deployment, the number of deployed sensors and their transmitting/sensing ranges. More specifically, we consider the following problems: Assume that n nodes, each capable of sensing events within a radius of r, are randomly and uniformly distributed in a 3-dimensional region R of volume V, how large must the sensing range rSense be to ensure a given degree of coverage of the region to monitor? For a given transmission range rTrans, what is the minimum (resp. maximum) degree of the network? What is then the typical hop-diameter of the underlying network? Next, we show how these results affect algorithmic aspects of the network by designing specific distributed protocols for sensor networks. Keywords Sensor networks, ad hoc networks; coverage, connectivity; hop-diameter; minimum/maximum degrees; transmitting/sensing ranges; analytical methods; energy consumption; topology control. I.