Results

**1 - 3**of**3**### Learning a hidden basis through imperfect measurements: An algorithmic primitive. arXiv preprint arXiv:1411.1420

, 2014

"... ar ..."

### Basis Learning as an Algorithmic Primitive *

, 2016

"... Abstract A number of important problems in theoretical computer science and machine learning can be interpreted as recovering a certain basis. These include symmetric matrix eigendecomposition, certain tensor decompositions, Independent Component Analysis (ICA), spectral clustering and Gaussian mix ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract A number of important problems in theoretical computer science and machine learning can be interpreted as recovering a certain basis. These include symmetric matrix eigendecomposition, certain tensor decompositions, Independent Component Analysis (ICA), spectral clustering and Gaussian mixture learning. Each of these problems reduces to an instance of our general model, which we call a "Basis Encoding Function" (BEF). We show that learning a basis within this model can then be provably and efficiently achieved using a first order iteration algorithm (gradient iteration). Our algorithm goes beyond tensor methods while generalizing a number of existing algorithms-e.g., the power method for symmetric matrices, the tensor power iteration for orthogonal decomposable tensors, and cumulant-based FastICA-all within a broader function-based dynamical systems framework. Our framework also unifies the unusual phenomenon observed in these domains that they can be solved using efficient non-convex optimization. Specifically, we describe a class of BEFs such that their local maxima on the unit sphere are in one-to-one correspondence with the basis elements. This description relies on a certain "hidden convexity" property of these functions. We provide a complete theoretical analysis of the gradient iteration even when the BEF is perturbed. We show convergence and complexity bounds polynomial in dimension and other relevant parameters, such as perturbation size. Our perturbation results can be considered as a nonlinear version of the classical Davis-Kahan theorem for perturbations of eigenvectors of symmetric matrices. In addition we show that our algorithm exhibits fast (superlinear) convergence and relate the speed of convergence to the properties of the BEF. Moreover, the gradient iteration algorithm can be easily and efficiently implemented in practice.

### A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA

"... Abstract Independent Component Analysis (ICA) is a popular model for blind signal separation. The ICA model assumes that a number of independent source signals are linearly mixed to form the observed signals. We propose a new algorithm, PEGI (for pseudo-Euclidean Gradient Iteration), for provable m ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract Independent Component Analysis (ICA) is a popular model for blind signal separation. The ICA model assumes that a number of independent source signals are linearly mixed to form the observed signals. We propose a new algorithm, PEGI (for pseudo-Euclidean Gradient Iteration), for provable model recovery for ICA with Gaussian noise. The main technical innovation of the algorithm is to use a fixed point iteration in a pseudo-Euclidean (indefinite "inner product") space. The use of this indefinite "inner product" resolves technical issues common to several existing algorithms for noisy ICA. This leads to an algorithm which is conceptually simple, efficient and accurate in testing. Our second contribution is combining PEGI with the analysis of objectives for optimal recovery in the noisy ICA model. It has been observed that the direct approach of demixing with the inverse of the mixing matrix is suboptimal for signal recovery in terms of the natural Signal to Interference plus Noise Ratio (SINR) criterion. There have been several partial solutions proposed in the ICA literature. It turns out that any solution to the mixing matrix reconstruction problem can be used to construct an SINR-optimal ICA demixing, despite the fact that SINR itself cannot be computed from data. That allows us to obtain a practical and provably SINR-optimal recovery method for ICA with arbitrary Gaussian noise.