Results 11  20
of
535
Robust approximate inverse preconditioning for the conjugate gradient method
 SIAM J. SCI. COMPUT
, 2000
"... We present a variant of the AINV factorized sparse approximate inverse algorithm which is applicable to any symmetric positive definite matrix. The new preconditioner is breakdownfree and, when used in conjunction with the conjugate gradient method, results in a reliable solver for highly illcondit ..."
Abstract

Cited by 60 (11 self)
 Add to MetaCart
We present a variant of the AINV factorized sparse approximate inverse algorithm which is applicable to any symmetric positive definite matrix. The new preconditioner is breakdownfree and, when used in conjunction with the conjugate gradient method, results in a reliable solver for highly illconditioned linear systems. We also investigate an alternative approach to a stable approximate inverse algorithm, based on the idea of diagonally compensated reduction of matrix entries. The results of numerical tests on challenging linear systems arising from finite element modeling of elasticity and diffusion problems are presented.
Preconditioning highly indefinite and nonsymmetric matrices
 SIAM J. SCI. COMPUT
, 2000
"... Standard preconditioners, like incomplete factorizations, perform well when the coefficient matrix is diagonally dominant, but often fail on general sparse matrices. We experiment with nonsymmetric permutationsand scalingsaimed at placing large entrieson the diagonal in the context of preconditionin ..."
Abstract

Cited by 57 (3 self)
 Add to MetaCart
Standard preconditioners, like incomplete factorizations, perform well when the coefficient matrix is diagonally dominant, but often fail on general sparse matrices. We experiment with nonsymmetric permutationsand scalingsaimed at placing large entrieson the diagonal in the context of preconditioning for general sparse matrices. The permutations and scalings are those developed by Olschowka and Neumaier [Linear Algebra Appl., 240 (1996), pp. 131–151] and by Duff and
ARMS: An Algebraic Recursive Multilevel Solver for general sparse linear systems
 Numer. Linear Alg. Appl
, 1999
"... This paper presents a general preconditioning method based on a multilevel partial solution approach. The basic step in constructing the preconditioner is to separate the initial points into two subsets. The first subset which can be termed "coarse" is obtained by using "block" ..."
Abstract

Cited by 54 (24 self)
 Add to MetaCart
(Show Context)
This paper presents a general preconditioning method based on a multilevel partial solution approach. The basic step in constructing the preconditioner is to separate the initial points into two subsets. The first subset which can be termed "coarse" is obtained by using "block" independent sets, or "aggregates". Two aggregates have no coupling between them, but nodes in the same aggregate may be coupled. The nodes not in the coarse set are part of what might be called the "Fringe" set. The idea of the methods is to form the Schur complement related to the fringe set. This leads to a natural block LU factorization which can be used as a preconditioner for the system. This system is then solver recursively using as preconditioner the factorization that could be obtained from the next level. Unlike other multilevel preconditioners available, iterations between levels are allowed. One interesting aspect of the method is that it provides a common framework for many other technique...
NLEVP: A Collection of Nonlinear Eigenvalue Problems
, 2010
"... We present a collection of 46 nonlinear eigenvalue problems in the form of a MATLAB toolbox. The collection contains problems from models of reallife applications as well as ones constructed specifically to have particular properties. A classification is given of polynomial eigenvalue problems acco ..."
Abstract

Cited by 51 (12 self)
 Add to MetaCart
(Show Context)
We present a collection of 46 nonlinear eigenvalue problems in the form of a MATLAB toolbox. The collection contains problems from models of reallife applications as well as ones constructed specifically to have particular properties. A classification is given of polynomial eigenvalue problems according to their structural properties. Identifiers based on these and other properties can be used to extract particular types of problems from the collection. A brief description of each problem is given. NLEVP serves both to illustrate the tremendous variety of applications of nonlinear Eigenvalue problems and to provide representative problems for testing, tuning, and benchmarking of algorithms and codes.
Making Sparse Gaussian Elimination Scalable by Static Pivoting
 In Proceedings of Supercomputing
, 1998
"... We propose several techniques as alternatives to partial pivoting to stabilize sparse Gaussian elimination. From numerical experiments we demonstrate that for a wide range of problems the new method is as stable as partial pivoting. The main advantage of the new method over partial pivoting is th ..."
Abstract

Cited by 44 (6 self)
 Add to MetaCart
(Show Context)
We propose several techniques as alternatives to partial pivoting to stabilize sparse Gaussian elimination. From numerical experiments we demonstrate that for a wide range of problems the new method is as stable as partial pivoting. The main advantage of the new method over partial pivoting is that it permits a priori determination of data structures and communication pattern for Gaussian elimination, which makes it more scalable on distributed memory machines. Based on this a priori knowledge, we design highly parallel algorithms for both sparse Gaussian elimination and triangular solve and we show that they are suitable for largescale distributed memory machines. Keywords: sparse unsymmetric linear systems, static pivoting, iterative refinement, MPI, 2D matrix decomposition. 1 Introduction In our earlier work [8, 9, 22], we developed new algorithms to solve unsymmetric sparse linear systems using Gaussian elimination with partial pivoting (GEPP). The new algorithms are hi...
Approximating Betweenness Centrality
, 2007
"... Betweenness is a centrality measure based on shortest paths, widely used in complex network analysis. It is computationallyexpensive to exactly determine betweenness; currently the fastestknown algorithm by Brandes requires O(nm) time for unweighted graphs and O(nm + n 2 log n) time for weighted ..."
Abstract

Cited by 42 (4 self)
 Add to MetaCart
Betweenness is a centrality measure based on shortest paths, widely used in complex network analysis. It is computationallyexpensive to exactly determine betweenness; currently the fastestknown algorithm by Brandes requires O(nm) time for unweighted graphs and O(nm + n 2 log n) time for weighted graphs, where n is the number of vertices and m is the number of edges in the network. These are also the worstcase time bounds for computing the betweenness score of a single vertex. In this paper, we present a novel approximation algorithm for computing betweenness centrality of a given vertex, for both weighted and unweighted graphs. Our approximation algorithm is based on an adaptive sampling technique that significantly reduces the number of singlesource shortest path computations for vertices with high centrality. We conduct an extensive experimental study on realworld graph instances, and observe that our random sampling algorithm gives very good betweenness approximations for biological networks, road networks and web crawls.
DirectionOptimizing BreadthFirst Search
"... Abstract—BreadthFirst Search is an important kernel used by many graphprocessing applications. In many of these emerging applications of BFS, such as analyzing social networks, the input graphs are lowdiameter and scalefree. We propose a hybrid approach that is advantageous for lowdiameter grap ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
(Show Context)
Abstract—BreadthFirst Search is an important kernel used by many graphprocessing applications. In many of these emerging applications of BFS, such as analyzing social networks, the input graphs are lowdiameter and scalefree. We propose a hybrid approach that is advantageous for lowdiameter graphs, which combines a conventional topdown algorithm along with a novel bottomup algorithm. The bottomup algorithm can dramatically reduce the number of edges examined, which in turn accelerates the search as a whole. On a multisocket server, our hybrid approach demonstrates speedups of 3.3–7.8 on a range of standard synthetic graphs and speedups of 2.4–4.6 on graphs from real social networks when compared to a strong baseline. We also typically double the performance of prior leading shared memory (multicore and GPU) implementations. I.