Results 1  10
of
12
Phase Retrieval via Wirtinger Flow: Theory and Algorithms
, 2014
"... We study the problem of recovering the phase from magnitude measurements; specifically, we wish to reconstruct a complexvalued signal x ∈ Cn about which we have phaseless samples of the form yr = ∣⟨ar,x⟩∣2, r = 1,...,m (knowledge of the phase of these samples would yield a linear system). This pape ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
We study the problem of recovering the phase from magnitude measurements; specifically, we wish to reconstruct a complexvalued signal x ∈ Cn about which we have phaseless samples of the form yr = ∣⟨ar,x⟩∣2, r = 1,...,m (knowledge of the phase of these samples would yield a linear system). This paper develops a nonconvex formulation of the phase retrieval problem as well as a concrete solution algorithm. In a nutshell, this algorithm starts with a careful initialization obtained by means of a spectral method, and then refines this initial estimate by iteratively applying novel update rules, which have low computational complexity, much like in a gradient descent scheme. The main contribution is that this algorithm is shown to rigorously allow the exact retrieval of phase information from a nearly minimal number of random measurements. Indeed, the sequence of successive iterates provably converges to the solution at a geometric rate so that the proposed scheme is efficient both in terms of computational and data resources. In theory, a variation on this scheme leads to a nearlinear time algorithm for a physically realizable model based on coded diffraction patterns. We illustrate the effectiveness of our methods with various experiments on image data. Underlying our analysis are insights for the analysis of nonconvex optimization schemes that may have implications for computational problems beyond phase retrieval.
Phase Retrieval from Coded Diffraction Patterns
, 2013
"... This paper considers the question of recovering the phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We study a physically realistic setup where one can modulate the signal of interest and then collect the inten ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
This paper considers the question of recovering the phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We study a physically realistic setup where one can modulate the signal of interest and then collect the intensity of its diffraction pattern, each modulation thereby producing a sort of coded diffraction pattern. We show that PhaseLift, a recent convex programming technique, recovers the phase information exactly from a number of random modulations, which is polylogarithmic in the number of unknowns. Numerical experiments with noiseless and noisy data complement our theoretical analysis and illustrate our approach.
Phase Retrieval with Application to Optical Imaging
, 2015
"... The problem of phase retrieval, i.e., the recovery of a function given the magnitude of its ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
The problem of phase retrieval, i.e., the recovery of a function given the magnitude of its
Solving Random Quadratic Systems of Equations is nearly as easy as . . .
, 2015
"... We consider the fundamental problem of solving quadratic systems of equations in n variables, where yi = 〈ai,x〉2, i = 1,...,m and x ∈ Rn is unknown. We propose a novel method, which starting with an initial guess computed by means of a spectral method, proceeds by minimizing a nonconvex functional ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We consider the fundamental problem of solving quadratic systems of equations in n variables, where yi = 〈ai,x〉2, i = 1,...,m and x ∈ Rn is unknown. We propose a novel method, which starting with an initial guess computed by means of a spectral method, proceeds by minimizing a nonconvex functional as in the Wirtinger flow approach [11]. There are several key distinguishing features, most notably, a distinct objective functional and novel update rules, which operate in an adaptive fashion and drop terms bearing too much influence on the search direction. These careful selection rules provide a tighter initial guess, better descent directions, and thus enhanced practical performance. On the theoretical side, we prove that for certain unstructured models of quadratic systems, our algorithms return the correct solution in linear time, i.e. in time proportional to reading the data {ai} and {yi} as soon as the ratio m/n between the number of equations and unknowns exceeds a fixed numerical constant. We extend the theory to deal with noisy systems in which we only have yi ≈ 〈ai,x〉2 and prove that our algorithms achieve a statistical accuracy, which is nearly unimprovable. We complement our theoretical study with numerical examples showing that solving random quadratic systems is both computationally and statistically not much harder than solving linear systems of the same size—hence the title of this paper. For instance, we
Algorithms and theory for clustering . . .
, 2014
"... In this dissertation we discuss three problems characterized by hidden structure or information. The first part of this thesis focuses on extracting subspace structures from data. Subspace Clustering is the problem of finding a multisubspace representation that best fits a collection of points tak ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In this dissertation we discuss three problems characterized by hidden structure or information. The first part of this thesis focuses on extracting subspace structures from data. Subspace Clustering is the problem of finding a multisubspace representation that best fits a collection of points taken from a highdimensional space. As with most clustering problems, popular techniques for subspace clustering are often difficult to analyze theoretically as they are often nonconvex in nature. Theoretical analysis of these algorithms becomes even more challenging in the presence of noise and missing data. We introduce a collection of subspace clustering algorithms, which are tractable and provably robust to various forms of data imperfections. We further illustrate our methods with numerical experiments on a wide variety of data segmentation problems. In the second part of the thesis, we consider the problem of recovering the seemingly hidden phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We formulate the
STABLE LOWRANK MATRIX RECOVERY VIA NULL SPACE PROPERTIES
"... Abstract. The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas such as quantum state tomography, machine learning and the PhaseLift approach to phaseless reconstruction problems. In order to derive rigorous recove ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas such as quantum state tomography, machine learning and the PhaseLift approach to phaseless reconstruction problems. In order to derive rigorous recovery results, the measurement map is usually modeled probabilistically and convex optimization approaches including nuclear norm minimization are often used as recovery method. In this article, we derive sufficient conditions on the minimal amount of measurements that ensure recovery via convex optimization. We establish our results via certain properties of the null space of the measurement map. In the setting where the measurements are realized as Frobenius inner products with independent standard Gaussian random matrices we show that m> 10r(n1 + n2) measurements are enough to uniformly and stably recover an n1 × n2 matrix of rank at most r. Stability is meant both with respect to passing from exactly rankr matrices to approximately rankr matrices and with respect to adding noise on the measurements. We then significantly generalize this result by only requiring independent meanzero, variance one entries with four finite moments at the cost of replacing 10 by some universal constant. We also study the particular case of recovering Hermitian rankr matrices from measurement matrices proportional to rankone projectors. For r = 1, such a problem reduces to the PhaseLift approach to phaseless recovery, while the case of higher rank is relevant for quantum state
A Geometric Analysis of Phase Retrieval
"... Abstract Can we recover a complex signal from its Fourier magnitudes? More generally, given a set of m measurements, y k = a * k x for k = 1, . . . , m, is it possible to recover x ∈ C n (i.e., lengthn complex vector)? This generalized phase retrieval (GPR) problem is a fundamental task in vario ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract Can we recover a complex signal from its Fourier magnitudes? More generally, given a set of m measurements, y k = a * k x for k = 1, . . . , m, is it possible to recover x ∈ C n (i.e., lengthn complex vector)? This generalized phase retrieval (GPR) problem is a fundamental task in various disciplines, and has been the subject of much recent investigation. Natural nonconvex heuristics often work remarkably well for GPR in practice, but lack clear theoretical explanations. In this paper, we take a step towards bridging this gap. We prove that when the measurement vectors a k 's are generic (i.i.d. complex Gaussian) and the number of measurements is large enough (m ≥ Cn log 3 n), with high probability, a natural leastsquares formulation for GPR has the following benign geometric structure: (1) there are no spurious local minimizers, and all global minimizers are equal to the target signal x, up to a global phase; and (2) the objective function has a negative curvature around each saddle point. This structure allows a number of iterative optimization methods to efficiently find a global minimizer, without special initialization. To corroborate the claim, we describe and analyze a secondorder trustregion algorithm.