Results 1 - 10
of
17
The maximum hypervolume set yields near-optimal approximation
- IN PROC. 12TH ANNUAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION (GECCO ’10
, 2010
"... In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the do ..."
Abstract
-
Cited by 14 (5 self)
- Add to MetaCart
In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the dominated portion of the objective space. Though the hypervolume indicator is very popular, it has not been shown that maximizing the hypervolume indicator is indeed equivalent to the overall objective of finding a good approximation of the Pareto front. To address this question, we compare the optimal approximation factor with the approximation factor achieved by sets maximizing the hypervolume indicator. We bound the optimal approximation factor of n points by 1 + Θ(1/n) for arbitrary Pareto fronts. Furthermore, we prove that the same asymptotic approximation ratio is achieved by sets of n points that maximize the hypervolume indicator. This shows that the speed of convergence of the approximation ratio achieved by maximizing the hypervolume indicator is asymptotically optimal. This implies that for large values of n, sets maximizing the hypervolume indicator quickly approach the optimal approximation ratio. Moreover, our bounds show that also for relatively small values of n, sets maximizing the hypervolume indicator achieve a near-optimal approximation ratio.
Hypervolume-based Multiobjective Optimization: Theoretical Foundations and Practical Implications
- THEORETICAL COMPUTER SCIENCE
, 2011
"... In recent years, indicator-based evolutionary algorithms, allowing to implicitly incorporate user preferences into the search, have become widely used in practice to solve multiobjective optimization problems. When using this type of methods, the optimization goal changes from optimizing a set of ob ..."
Abstract
-
Cited by 10 (4 self)
- Add to MetaCart
In recent years, indicator-based evolutionary algorithms, allowing to implicitly incorporate user preferences into the search, have become widely used in practice to solve multiobjective optimization problems. When using this type of methods, the optimization goal changes from optimizing a set of objective functions simultaneously to the singleobjective optimization goal of finding a set of µ points that maximizes the underlying indicator. Understanding the difference between these two optimization goals is fundamental when applying indicator-based algorithms in practice. On the one hand, a characterization of the inherent optimization goal of different indicators allows the user to choose the indicator that meets her preferences. On the other hand, knowledge about the sets of µ points with optimal indicator values—so-called optimal µ-distributions—can be used in performance assessment whenever the indicator is used as a performance criterion. However, theoretical studies on indicator-based optimization are sparse. One of the most popular indicators is the weighted hypervolume indicator. It allows to guide the search towards user-defined objective space regions and at the same time has the property of being a refinement of the Pareto dominance relation with the result that maximizing the indicator results in Pareto-optimal solutions only. In previous work, we theoretically investigated the unweighted hypervolume indicator in terms of a characterization of optimal µ-distributions and the influence of the hypervolume’s reference point for general bi-objective optimization problems. In this
Tight bounds for the approximation ratio of the hypervolume indicator
- In Proc. 11th International Conference 29 Problem Solving from Nature (PPSN XI), volume 6238 of LNCS
, 2010
"... Abstract The hypervolume indicator is widely used to guide the search and to evaluate the performance of evolutionary multi-objective optimization algorithms. It measures the volume of the dominated portion of the objective space which is considered to give a good approximation of the Pareto front. ..."
Abstract
-
Cited by 7 (5 self)
- Add to MetaCart
(Show Context)
Abstract The hypervolume indicator is widely used to guide the search and to evaluate the performance of evolutionary multi-objective optimization algorithms. It measures the volume of the dominated portion of the objective space which is considered to give a good approximation of the Pareto front. There is surprisingly little theoretically known about the quality of this approximation. We examine the multiplicative approximation ratio achieved by two-dimensional sets maximizing the hypervolume indicator and prove that it deviates significantly from the optimal approximation ratio. This provable gap is even exponential in the ratio between the largest and the smallest value of the front. We also examine the additive approximation ratio of the hypervolume indicator and prove that it achieves the optimal additive approximation ratio apart from a small factor � n/(n − 2), where n is the size of the population. Hence the hypervolume indicator can be used to achieve a very good additive but not a good multiplicative approximation of a Pareto front. 1
Approximation Quality of the Hypervolume Indicator
, 2012
"... In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the do ..."
Abstract
-
Cited by 5 (5 self)
- Add to MetaCart
In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective optimizers use indicator functions to guide the search and to evaluate the performance of search algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of the dominated portion of the objective space bounded from below by a reference point. Though the hypervolume indicator is very popular, it has not been shown that maximizing the hypervolume indicator of sets of bounded size is indeed equivalent to the overall objective of finding a good approximation of the Pareto front. To address this question, we compare the optimal approximation ratio with the approximation ratio achieved by two-dimensional sets maximizing the hypervolume indicator. We bound the optimal multiplicative approximation ratio of n points by 1+Θ(1/n) for arbitrary Pareto fronts. Furthermore, we prove that the same asymptotic approximation ratio is achieved by sets of n points that maximize the hypervolume indicator. However, there is a provable gap between the two approximation ratios which is even exponential in the ratio between the largest and the smallest value of the front. We also examine the additive approximation ratio of the hypervolume indicator in two dimensions and prove that it achieves the optimal additive approximation ratio apart from a small ratio � n/(n−2), where n is the size of the population. Hence the hypervolume indicator can be used to achieve a good additive but not a good multiplicative approximation of a Pareto front. This motivates the introduction of a “logarithmic hypervolume indicator ” which provably achieves a good multiplicative approximation ratio.
The Logarithmic Hypervolume Indicator
, 2011
"... It was recently proven that sets of points maximizing the hypervolume indicator do not give a good multiplicative approximation of the Pareto front. We introduce a new“logarithmic hypervolume indicator”and prove that it achieves a close-to-optimal multiplicative approximation ratio. This is experime ..."
Abstract
-
Cited by 5 (3 self)
- Add to MetaCart
It was recently proven that sets of points maximizing the hypervolume indicator do not give a good multiplicative approximation of the Pareto front. We introduce a new“logarithmic hypervolume indicator”and prove that it achieves a close-to-optimal multiplicative approximation ratio. This is experimentally verified on several benchmark functions by comparing the approximation quality of the multi-objective covariance matrix evolution strategy (MO-CMA-ES) with the classic hypervolume indicator and the MO-CMA-ES with the logarithmic hypervolume indicator.
Optimal µ-Distributions for the Hypervolume Indicator for Problems With Linear Bi-Objective Fronts: Exact and Exhaustive Results
- SIMULATED EVOLUTION AND LEARNING (SEAL-2010), DEC 2010, KANPUR, INDIA. 2010
, 2010
"... ..."
(Show Context)
Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space
"... Abstract. Many-objective optimization is a hot issue in the EMO (evolutionary multiobjective optimization) community. Since almost all solutions in the current population are non-dominated with each other in many-objective EMO algorithms, we may need a different fitness evaluation scheme from the ca ..."
Abstract
-
Cited by 4 (2 self)
- Add to MetaCart
(Show Context)
Abstract. Many-objective optimization is a hot issue in the EMO (evolutionary multiobjective optimization) community. Since almost all solutions in the current population are non-dominated with each other in many-objective EMO algorithms, we may need a different fitness evaluation scheme from the case of two and three objectives. One difficulty in the design of many-objective EMO algorithms is that we cannot visually observe the behavior of multiobjective evolution in the objective space with four or more objectives. In this paper, we propose the use of many-objective test problems in a two- or three-dimensional decision space to visually examine the behavior of multiobjective evolution. Such a visual examination helps us to understand the characteristic features of EMO algorithms for many-objective optimization. Good understanding of existing EMO algorithms may facilitates their modification and the development of new EMO algorithms for many-objective optimization.
A Fast Approximation-Guided Evolutionary Multi-Objective Algorithm
"... Approximation-Guided Evolution (AGE) [4] is a recently presented multi-objective algorithm that outperforms state-of-the-art multimulti-objective algorithms in terms of approximation quality. This holds for problems with many objectives, but AGE’s performance is not competitive on problems with few ..."
Abstract
-
Cited by 3 (2 self)
- Add to MetaCart
(Show Context)
Approximation-Guided Evolution (AGE) [4] is a recently presented multi-objective algorithm that outperforms state-of-the-art multimulti-objective algorithms in terms of approximation quality. This holds for problems with many objectives, but AGE’s performance is not competitive on problems with few objectives. Furthermore, AGE is storing all non-dominated points seen so far in an archive, which can have very detrimental effects on its runtime. In this article, we present the fast approximation-guided evolutionary algorithm called AGE-II. It approximates the archive in order to control its size and its influence on the runtime. This allows for trading-off approximation and runtime, and it enables a faster approximation process. Our experiments show that AGE-II performs very well for multi-objective problems having few as well as many objectives. It scales well with the number of objectives and enables practitioners to add objectives to their problems at small additional computational cost.
Simultaneous Use of Different Scalarizing Functions in MOEA/D
"... The use of Pareto dominance for fitness evaluation has been the mainstream in evolutionary multiobjective optimization for the last two decades. Recently, it has been pointed out in some studies that Pareto dominance-based algorithms do not always work well on multiobjective problems with many objec ..."
Abstract
-
Cited by 3 (1 self)
- Add to MetaCart
(Show Context)
The use of Pareto dominance for fitness evaluation has been the mainstream in evolutionary multiobjective optimization for the last two decades. Recently, it has been pointed out in some studies that Pareto dominance-based algorithms do not always work well on multiobjective problems with many objectives. Scalarizing function-based fitness evaluation is a promising alternative to Pareto dominance especially for the case of many objectives. A representative scalarizing function-based algorithm is MOEA/D (multiobjective evolutionary algorithm based on decomposition) of Zhang & Li (2007). Its high search ability has already been shown for various problems. One important implementation issue of MOEA/D is a choice of a scalarizing function because its search ability strongly depends on this choice. It is, however, not easy to choose an appropriate scalarizing function for each multiobjective problem. In this paper, we propose an idea of using different types of scalarizing functions simultaneously. For example, both the weighted Tchebycheff (Chebyshev) and the weighted sum are used for fitness evaluation. We examine two methods for implementing our idea. One is to use multiple grids of weight vectors and the other is to assign a different scalarizing function alternately to each weight vector in a single grid.