Results 1 - 10
of
592
Econometric analysis of realized volatility and its use in estimating stochastic volatility models
, 2002
"... ..."
Likelihood Inference for Discretely Observed Non-Linear Di¤usions, Working Paper, Nu¢eld College,
, 1998
"... ..."
An empirical investigation of continuous-time equity return models
- Journal of Finance
, 2002
"... This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of time-varying intensity. We find that any reasonably descriptive continuous-time model for equity-index returns must allow for discrete jumps as well as stochastic volatility with a pronou ..."
Abstract
-
Cited by 240 (12 self)
- Add to MetaCart
This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of time-varying intensity. We find that any reasonably descriptive continuous-time model for equity-index returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equity-index returns and the stylized features of the corresponding options market prices. MUCH ASSET AND DERIVATIVE PRICING THEORY is based on diffusion models for primary securities. However, prescriptions for practical applications derived from these models typically produce disappointing results. A possible explanation could be that analytic formulas for pricing and hedging are available for only a limited set of continuous-time representations for asset returns
Range-based estimation of stochastic volatility models
, 2002
"... We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that range-based volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence range-based Gaussian qu ..."
Abstract
-
Cited by 223 (19 self)
- Add to MetaCart
We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that range-based volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence range-based Gaussian quasi-maximum likelihood estimation produces highly efficient estimates of stochastic volatility models and extractions of latent volatility. We use our method to examine the dynamics of daily exchange rate volatility and find the evidence points strongly toward two-factor models with one highly persistent factor and one quickly mean-reverting factor. VOLATILITY IS A CENTRAL CONCEPT in finance, whether in asset pricing, portfolio choice, or risk management. Not long ago, theoretical models routinely assumed constant volatility ~e.g., Merton ~1969!, Black and Scholes ~1973!!. Today, however, we widely acknowledge that volatility is both time varying and predictable ~e.g., Andersen and Bollerslev ~1997!!, andstochastic volatility models are commonplace. Discrete- and continuous-time stochastic volatility models are extensively used in theoretical finance, empirical finance, and financial econometrics, both in academe and industry ~e.g., Hull and
Econometric analysis of realised volatility and its use in estimating stochastic volatility models
, 2001
"... ..."
Statistical algorithms for models in state space using SstPack 2.2
- ECONOMETRICS JOURNAL (1999), VOLUME 2, PP. 113–166.
, 1999
"... This paper discusses and documents the algorithms of SsfPack 2.2. SsfPack is a suite of C routines for carrying out computations involving the statistical analysis of univariate and multivariate models in state space form. The emphasis is on documenting the link we have made to the Ox computing en ..."
Abstract
-
Cited by 201 (34 self)
- Add to MetaCart
This paper discusses and documents the algorithms of SsfPack 2.2. SsfPack is a suite of C routines for carrying out computations involving the statistical analysis of univariate and multivariate models in state space form. The emphasis is on documenting the link we have made to the Ox computing environment. SsfPack allows for a full range of different state space forms: from a simple time-invariant model to a complicated time-varying model. Functions can be used which put standard models such as ARMA and cubic spline models in state space form. Basic functions are available for filtering, moment smoothing and simulation smoothing. Ready-to-use functions are provided for standard tasks such as likelihood evaluation, forecasting and signal extraction. We show that SsfPack can be eas-ily used for implementing, fitting and analysing Gaussian models relevant to many areas of econometrics and statistics. Some Gaussian illustrations are given.
The Time-Varying Volatility of Macroeconomic Fluctuations
, 2006
"... In this paper we investigate the sources of the important shifts in the volatility of U.S. macroeconomic variables in the postwar period. To this end, we propose the estimation of DSGE models allowing for time variation in the volatility of the structural innovations. We apply our estimation strate ..."
Abstract
-
Cited by 160 (5 self)
- Add to MetaCart
In this paper we investigate the sources of the important shifts in the volatility of U.S. macroeconomic variables in the postwar period. To this end, we propose the estimation of DSGE models allowing for time variation in the volatility of the structural innovations. We apply our estimation strategy to a large-scale model of the business cycle and find that investment specific technology shocks account for most of the sharp decline in volatility of the last two decades.