Results 1 - 10
of
474
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract
-
Cited by 819 (28 self)
- Add to MetaCart
(Show Context)
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sum-product, cluster variational methods, expectation-propagation, mean field methods, max-product and linear programming relaxation, as well as conic programming relaxations — can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.
Markov Logic Networks
- MACHINE LEARNING
, 2006
"... We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the ..."
Abstract
-
Cited by 816 (39 self)
- Add to MetaCart
(Show Context)
We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract
-
Cited by 770 (3 self)
- Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linear-Gaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Max-margin Markov networks
, 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernel-based approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract
-
Cited by 604 (15 self)
- Add to MetaCart
In typical classification tasks, we seek a function which assigns a label to a single object. Kernel-based approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ability to use high-dimensional feature spaces, and from their strong theoretical guarantees. However, many real-world tasks involve sequential, spatial, or structured data, where multiple labels must be assigned. Existing kernel-based methods ignore structure in the problem, assigning labels independently to each object, losing much useful information. Conversely, probabilistic graphical models, such as Markov networks, can represent correlations between labels, by exploiting problem structure, but cannot handle high-dimensional feature spaces, and lack strong theoretical generalization guarantees. In this paper, we present a new framework that combines the advantages of both approaches: Maximum margin Markov (M 3) networks incorporate both kernels, which efficiently deal with high-dimensional features, and the ability to capture correlations in structured data. We present an efficient algorithm for learning M 3 networks based on a compact quadratic program formulation. We provide a new theoretical bound for generalization in structured domains. Experiments on the task of handwritten character recognition and collective hypertext classification demonstrate very significant gains over previous approaches. 1
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
- IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, error-correcting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract
-
Cited by 585 (13 self)
- Add to MetaCart
(Show Context)
Important inference problems in statistical physics, computer vision, error-correcting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems that is exact when the factor graph is a tree, but only approximate when the factor graph has cycles. We show that BP fixed points correspond to the stationary points of the Bethe approximation of the free energy for a factor graph. We explain how to obtain regionbased free energy approximations that improve the Bethe approximation, and corresponding generalized belief propagation (GBP) algorithms. We emphasize the conditions a free energy approximation must satisfy in order to be a “valid ” or “maxent-normal ” approximation. We describe the relationship between four different methods that can be used to generate valid approximations: the “Bethe method, ” the “junction graph method, ” the “cluster variation method, ” and the “region graph method.” Finally, we explain how to tell whether a region-based approximation, and its corresponding GBP algorithm, is likely to be accurate, and describe empirical results showing that GBP can significantly outperform BP.
Learning low-level vision
- International Journal of Computer Vision
, 2000
"... We show a learning-based method for low-level vision problems. We set-up a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently prop ..."
Abstract
-
Cited by 579 (30 self)
- Add to MetaCart
(Show Context)
We show a learning-based method for low-level vision problems. We set-up a Markov network of patches of the image and the underlying scene. A factorization approximation allows us to easily learn the parameters of the Markov network from synthetic examples of image/scene pairs, and to e ciently propagate image information. Monte Carlo simulations justify this approximation. We apply this to the \super-resolution " problem (estimating high frequency details from a low-resolution image), showing good results. For the motion estimation problem, we show resolution of the aperture problem and lling-in arising from application of the same probabilistic machinery.
Convergent Tree-reweighted Message Passing for Energy Minimization
- ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2006. ABSTRACTACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI)
, 2006
"... Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33]- tree-reweighted max-product message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy ..."
Abstract
-
Cited by 489 (16 self)
- Add to MetaCart
Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33]- tree-reweighted max-product message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy. However, the algorithm is not guaranteed to increase this bound- it may actually go down. In addition, TRW does not always converge. We develop a modification of this algorithm which we call sequential tree-reweighted message passing. Its main property is that the bound is guaranteed not to decrease. We also give a weak tree agreement condition which characterizes local maxima of the bound with respect to TRW algorithms. We prove that our algorithm has a limit point that achieves weak tree agreement. Finally, we show that our algorithm requires half as much memory as traditional message passing approaches. Experimental results demonstrate that on certain synthetic and real problems our algorithm outperforms both the ordinary belief propagation and tree-reweighted algorithm in [33]. In addition, on stereo problems with Potts interactions we obtain a lower energy than graph cuts.
A comparative study of energy minimization methods for Markov random fields
- IN ECCV
, 2006
"... One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While many such problems can be elegantly expressed in the language of Markov Ran ..."
Abstract
-
Cited by 415 (36 self)
- Add to MetaCart
(Show Context)
One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While many such problems can be elegantly expressed in the language of Markov Random Fields (MRF’s), the resulting energy minimization problems were widely viewed as intractable. Recently, algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: for example, such methods form the basis for almost all the top-performing stereo methods. Unfortunately, most papers define their own energy function, which is minimized with a specific algorithm of their choice. As a result, the tradeoffs among different energy minimization algorithms are not well understood. In this paper we describe a set of energy minimization benchmarks, which we use to compare the solution quality and running time of several common energy minimization algorithms. We investigate three promising recent methods—graph cuts, LBP, and tree-reweighted message passing—as well as the well-known older iterated conditional modes (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching and interactive segmentation. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods with minimal overhead. We expect that the availability of our benchmarks and interface will make it significantly easier for vision researchers to adopt the best method for their specific problems. Benchmarks, code, results and images are available at