Results 1  10
of
13
Phase retrieval with polarization
 SIAM J. ON IMAGING SCI
, 2013
"... In many areas of imaging science, it is difficult to measure the phase of linear measurements. As such, one often wishes to reconstruct a signal from intensity measurements, that is, perform phase retrieval. In this paper, we provide a novel measurement design which is inspired by interferometry and ..."
Abstract

Cited by 22 (5 self)
 Add to MetaCart
(Show Context)
In many areas of imaging science, it is difficult to measure the phase of linear measurements. As such, one often wishes to reconstruct a signal from intensity measurements, that is, perform phase retrieval. In this paper, we provide a novel measurement design which is inspired by interferometry and exploits certain properties of expander graphs. We also give an efficient phase retrieval procedure, and use recent results in spectral graph theory to produce a stable performance guarantee which rivals the guarantee for PhaseLift in [14]. We use numerical simulations to illustrate the performance of our phase retrieval procedure, and we compare reconstruction error and runtime with a common alternatingprojectionstype procedure.
Phase Retrieval from Coded Diffraction Patterns
, 2013
"... This paper considers the question of recovering the phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We study a physically realistic setup where one can modulate the signal of interest and then collect the inten ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
This paper considers the question of recovering the phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We study a physically realistic setup where one can modulate the signal of interest and then collect the intensity of its diffraction pattern, each modulation thereby producing a sort of coded diffraction pattern. We show that PhaseLift, a recent convex programming technique, recovers the phase information exactly from a number of random modulations, which is polylogarithmic in the number of unknowns. Numerical experiments with noiseless and noisy data complement our theoretical analysis and illustrate our approach.
A Partial Derandomization of PhaseLift using Spherical Designs
, 2013
"... ABSTRACT. The problem of retrieving phase information from amplitude measurements alone has appeared in many scientific disciplines over the last century. PhaseLift is a recently introduced algorithm for phase recovery that is computationally efficient, numerically stable, and comes with rigorous pe ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
(Show Context)
ABSTRACT. The problem of retrieving phase information from amplitude measurements alone has appeared in many scientific disciplines over the last century. PhaseLift is a recently introduced algorithm for phase recovery that is computationally efficient, numerically stable, and comes with rigorous performance guarantees. PhaseLift is optimal in the sense that the number of amplitude measurements required for phase reconstruction scales linearly with the dimension of the signal. However, it specifically demands Gaussian random measurement vectors — a limitation that restricts practical utility and obscures the specific properties of measurement ensembles that enable phase retrieval. Here we present a partial derandomization of PhaseLift that only requires sampling from certain polynomial size vector configurations, called tdesigns. Such configurations have been studied in algebraic combinatorics, coding theory, and quantum information. We prove reconstruction guarantees for a number of measurements that depends on the degree t of the design. If the degree is allowed to to grow logarithmically with the dimension, the bounds become tight up to polylogfactors. Beyond the specific case of PhaseLift, this work highlights the utility of spherical designs for the derandomization of data recovery schemes. 1.
Framework Design
 In Proceedings of the 1998 Conference on Object Oriented Programming Systems, Languages, and Applications (OOPSLA ’98
, 1998
"... ar ..."
(Show Context)
Stability of Phase Retrievable Frames
 proceedings of SPIE 2013
"... In this paper we study the property of phase retrievability by redundant sysems of vectors under perturbations of the frame set. Specifically we show that if a set F of m vectors in the complex Hilbert space of dimension n allows for vector reconstruction from magnitudes of its coefficients, then th ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
In this paper we study the property of phase retrievability by redundant sysems of vectors under perturbations of the frame set. Specifically we show that if a set F of m vectors in the complex Hilbert space of dimension n allows for vector reconstruction from magnitudes of its coefficients, then there is a perturbation bound ρ so that any frame set within ρ from F has the same property. In particular this proves the recent construction in15 is stable under perturbations. By the same token we reduce the critical cardinality conjectured in11 to proving a stability result for non phaseretrievable frames.
Algorithms and theory for clustering . . .
, 2014
"... In this dissertation we discuss three problems characterized by hidden structure or information. The first part of this thesis focuses on extracting subspace structures from data. Subspace Clustering is the problem of finding a multisubspace representation that best fits a collection of points tak ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In this dissertation we discuss three problems characterized by hidden structure or information. The first part of this thesis focuses on extracting subspace structures from data. Subspace Clustering is the problem of finding a multisubspace representation that best fits a collection of points taken from a highdimensional space. As with most clustering problems, popular techniques for subspace clustering are often difficult to analyze theoretically as they are often nonconvex in nature. Theoretical analysis of these algorithms becomes even more challenging in the presence of noise and missing data. We introduce a collection of subspace clustering algorithms, which are tractable and provably robust to various forms of data imperfections. We further illustrate our methods with numerical experiments on a wide variety of data segmentation problems. In the second part of the thesis, we consider the problem of recovering the seemingly hidden phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We formulate the
FRAMES AND PHASELESS RECONSTRUCTION AMS SHORT COURSE: JOINT MATHEMATICS MEETINGS . . .
"... Frame design for phaseless reconstruction is now part of the broader problem of nonlinear recon struction and is an emerging topic in harmonic analysis. The problem of phaseless reconstruction can be simply stated as follows. Given the magnitudes of the coefficients of an output of a linear redunda ..."
Abstract
 Add to MetaCart
Frame design for phaseless reconstruction is now part of the broader problem of nonlinear recon struction and is an emerging topic in harmonic analysis. The problem of phaseless reconstruction can be simply stated as follows. Given the magnitudes of the coefficients of an output of a linear redundant system (frame), we want to reconstruct the unknown input. This problem has first occurred in Xray crystallography starting from the early 20th century. The same nonlinear reconstruction problem shows up in speech processing, particularly in speech recognition. In this lecture we shall cover existing analysis results as well as algorithms for signal recovery including: necessary and sufficient conditions for injectivity, Lipschitz bounds of the nonlinear map and its left inverses, stochastic performance bounds, convex relaxation algorithms for inversion, leastsquares inversion algorithms.
STABILITY OF FRAMES WHICH GIVE PHASE RETRIEVAL
"... In this paper we study the property of phase retrievability by redundant sysems of vectors under perturbations of the frame set. Specifically we show that if a set F of m vectors in the complex Hilbert space of dimension n allows for vector reconstruction from magnitudes of its coefficients, then th ..."
Abstract
 Add to MetaCart
In this paper we study the property of phase retrievability by redundant sysems of vectors under perturbations of the frame set. Specifically we show that if a set F of m vectors in the complex Hilbert space of dimension n allows for vector reconstruction from magnitudes of its coefficients, then there is a perturbation bound ρ so that any frame set within ρ from F has the same property. In particular this proves a recent construction for the case m = 4n − 4 s stable under perturbations. Additionally we provide estimates of the stability radius.