Results 1  10
of
235
HighRate Codes that are Linear in Space and Time
 IEEE Trans. Inform. Theory
, 2000
"... Multipleantenna systems that operate at high rates require simple yet effective spacetime transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, VBLAST, where every antenna transmits its own independent substream of data, has been shown to have good ..."
Abstract

Cited by 422 (13 self)
 Add to MetaCart
(Show Context)
Multipleantenna systems that operate at high rates require simple yet effective spacetime transmission schemes to handle the large traffic volume in real time. At rates of tens of bits/sec/Hz, VBLAST, where every antenna transmits its own independent substream of data, has been shown to have good performance and simple encoding and decoding. Yet VBLAST suffers from its inability to work with fewer receive antennas than transmit antennasthis deficiency is especially important for modern cellular systems where a basestation typically has more antennas than the mobile handsets. Furthermore, because VBLAST transmits independent data streams on its antennas there is no builtin spatial coding to guard against deep fades from any given transmit antenna. On the other hand, there are many previouslyproposed spacetime codes that have good fading resistance and simple decoding, but these codes generally have poor performance at high data rates or with many antennas. We propose a highrate coding scheme that can handle any...
Achieving nearcapacity on a multipleantenna channel
 IEEE Trans. Commun
, 2003
"... Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve nearcapacity on a singleantenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve nea ..."
Abstract

Cited by 402 (2 self)
 Add to MetaCart
(Show Context)
Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve nearcapacity on a singleantenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve nearcapacity on a multipleantenna system where the receiver knows the channel. Combining iterative processing with multipleantenna channels is particularly challenging because the channel capacities can be a factor of ten or more higher than their singleantenna counterparts. Using a “list ” version of the sphere decoder, we provide a simple method to iteratively detect and decode any linear spacetime mapping combined with any channel code that can be decoded using socalled “soft ” inputs and outputs. We exemplify our technique by directly transmitting symbols that are coded with a channel code; we show that iterative processing with even this simple scheme can achieve nearcapacity. We consider both simple convolutional and powerful turbo channel codes and show that excellent performance at very high data rates can be attained with either. We compare our simulation results with Shannon capacity limits for ergodic multipleantenna channel. Index Terms—Wireless communications, BLAST, turbo codes, transmit diversity, receive diversity, fading channels, sphere decoding, softin/softout, concatenated codes 1
From theory to practice: an overview of MIMO spacetime coded wireless systems
 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
, 2003
"... This paper presents an overview of recent progress in the area of multipleinput–multipleoutput (MIMO) space–time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of technique ..."
Abstract

Cited by 371 (6 self)
 Add to MetaCart
(Show Context)
This paper presents an overview of recent progress in the area of multipleinput–multipleoutput (MIMO) space–time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of techniques and algorithms proposed which attempt to realize the various benefits of MIMO including spatial multiplexing and space–time coding schemes. These algorithms are often derived and analyzed under ideal independent fading conditions. We present the state of the art in channel modeling and measurements, leading to a better understanding of actual MIMO gains. Finally, the paper addresses current questions regarding the integration of MIMO links in practical wireless systems and standards.
Closest Point Search in Lattices
 IEEE TRANS. INFORM. THEORY
, 2000
"... In this semitutorial paper, a comprehensive survey of closestpoint search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closestpoint search algorithm, ba ..."
Abstract

Cited by 333 (2 self)
 Add to MetaCart
(Show Context)
In this semitutorial paper, a comprehensive survey of closestpoint search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closestpoint search algorithm, based on the SchnorrEuchner variation of the Pohst method, is implemented. Given an arbitrary point x 2 R m and a generator matrix for a lattice , the algorithm computes the point of that is closest to x. The algorithm is shown to be substantially faster than other known methods, by means of a theoretical comparison with the Kannan algorithm and an experimental comparison with the Pohst algorithm and its variants, such as the recent ViterboBoutros decoder. The improvement increases with the dimension of the lattice. Modifications of the algorithm are developed to solve a number of related search problems for lattices, such as finding a shortest vector, determining the kissing number, compu...
A VectorPerturbation technique for NearCapacity . . .
 IEEE TRANS. COMMUN
, 2005
"... Recent theoretical results describing the sum capacity when using multiple antennas to communicate with multiple users in a known rich scattering environment have not yet been followed with practical transmission schemes that achieve this capacity. We introduce a simple encoding algorithm that achi ..."
Abstract

Cited by 323 (10 self)
 Add to MetaCart
(Show Context)
Recent theoretical results describing the sum capacity when using multiple antennas to communicate with multiple users in a known rich scattering environment have not yet been followed with practical transmission schemes that achieve this capacity. We introduce a simple encoding algorithm that achieves nearcapacity at sum rates of tens of bits/channel use. The algorithm is a variation on channel inversion that regularizes the inverse and uses a “sphere encoder ” to perturb the data to reduce the power of the transmitted signal. This paper is comprised of two parts. In this first part, we show that while the sum capacity grows linearly with the minimum of the number of antennas and users, the sum rate of channel inversion does not. This poor performance is due to the large spread in the singular values of the channel matrix. We introduce regularization to improve the condition of the inverse and maximize the signaltointerferenceplusnoise ratio at the receivers. Regularization enables linear growth and works especially well at low signaltonoise ratios (SNRs), but as we show in the second part, an additional step is needed to achieve nearcapacity performance at all SNRs.
On MaximumLikelihood Detection and the Search for the Closest Lattice Point
 IEEE TRANS. INFORM. THEORY
, 2003
"... Maximumlikelihood (ML) decoding algorithms for Gaussian multipleinput multipleoutput (MIMO) linear channels are considered. Linearity over the field of real numbers facilitates the design of ML decoders using numbertheoretic tools for searching the closest lattice point. These decoders are colle ..."
Abstract

Cited by 273 (9 self)
 Add to MetaCart
(Show Context)
Maximumlikelihood (ML) decoding algorithms for Gaussian multipleinput multipleoutput (MIMO) linear channels are considered. Linearity over the field of real numbers facilitates the design of ML decoders using numbertheoretic tools for searching the closest lattice point. These decoders are collectively referred to as sphere decoders in the literature. In this paper, a fresh look at this class of decoding algorithms is taken. In particular, two novel algorithms are developed. The first algorithm is inspired by the Pohst enumeration strategy and is shown to offer a significant reduction in complexity compared to the ViterboBoutros sphere decoder. The connection between the proposed algorithm and the stack sequential decoding algorithm is then established. This connection is utilized to construct the second algorithm which can also be viewed as an application of the SchnorrEuchner strategy to ML decoding. Aided with a detailed study of preprocessing algorithms, a variant of the second algorithm is developed and shown to offer significant reductions in the computational complexity compared to all previously proposed sphere decoders with a nearML detection performance. This claim is supported by intuitive arguments and simulation results in many relevant scenarios.
Antenna Selection for Spatial Multiplexing Systems Based on Minimum Error Rate
"... Future cellular systems will employ spatial multiplexing with multiple antennas at both transmitter and receiver to take advantage of large capacity gains. In such systems it will be desirable to select a subset of available transmit antennas for link initialization, link maintenance, or handoff. In ..."
Abstract

Cited by 180 (11 self)
 Add to MetaCart
Future cellular systems will employ spatial multiplexing with multiple antennas at both transmitter and receiver to take advantage of large capacity gains. In such systems it will be desirable to select a subset of available transmit antennas for link initialization, link maintenance, or handoff. In this paper we present a criteria for selecting the optimal antenna subset in terms of minimum error rate, when coherent receivers, either linear or maximum likelihood (ML), are used over a slowly varying channel. For the ML receiver we propose to pick the subset whose output constellation has the largest minimum Euclidean distance. For the linear receiver we propose use of the postprocessing SNRs (signal to noise ratios) of the multiplexed streams whereby the antenna subset that induces the largest minimum SNR is chosen. Simulations demonstrate that our selection algorithms also provides diversity advantage thus making subset selection useful over fading channels. I.
FullDiversity, HighRate SpaceTime Block Codes from Division Algebras
 IEEE TRANS. INFORM. THEORY
, 2003
"... We present some general techniques for constructing fullrank, minimaldelay, rate at least one spacetime block codes (STBCs) over a variety of signal sets for arbitrary number of transmit antennas using commutative division algebras (field extensions) as well as using noncommutative division algeb ..."
Abstract

Cited by 177 (55 self)
 Add to MetaCart
(Show Context)
We present some general techniques for constructing fullrank, minimaldelay, rate at least one spacetime block codes (STBCs) over a variety of signal sets for arbitrary number of transmit antennas using commutative division algebras (field extensions) as well as using noncommutative division algebras of the rational field embedded in matrix rings. The first half of the paper deals with constructions using field extensions of . Working with cyclotomic field extensions, we construct several families of STBCs over a wide range of signal sets that are of full rank, minimal delay, and rate at least one appropriate for any number of transmit antennas. We study the coding gain and capacity of these codes. Using transcendental extensions we construct arbitrary rate codes that are full rank for arbitrary number of antennas. We also present a method of constructing STBCs using noncyclotomic field extensions. In the later half of the paper, we discuss two ways of embedding noncommutative division algebras into matrices: left regular representation, and representation over maximal cyclic subfields. The 4 4 real orthogonal design is obtained by the left regular representation of quaternions. Alamouti's code is just a special case of the construction using representation over maximal cyclic subfields and we observe certain algebraic uniqueness characteristics of it. Also, we discuss a general principle for constructing cyclic division algebras using the th root of a transcendental element and study the capacity of the STBCs obtained from this construction. Another family of cyclic division algebras discovered by Brauer is discussed and several examples of STBCs derived from each of these constructions are presented.
An Overview of MIMO Communications: A Key to Gigabit Wireless
 Proc. IEEE
, 2004
"... High data rate wireless communications, nearing 1 Gigabit/second (Gbps) transmission rates, is of interest in emerging Wireless Local Area Networks (WLANs) and home Audio/Visual (A/V) networks. Designing very high speed wireless links that offer good QualityofService (QoS) and range capability in ..."
Abstract

Cited by 176 (0 self)
 Add to MetaCart
(Show Context)
High data rate wireless communications, nearing 1 Gigabit/second (Gbps) transmission rates, is of interest in emerging Wireless Local Area Networks (WLANs) and home Audio/Visual (A/V) networks. Designing very high speed wireless links that offer good QualityofService (QoS) and range capability in NonLineofSight (NLOS) environments constitutes a significant research and engineering challenge. Ignoring fading in NLOS environments, we can, in principle, meet the 1Gbps data rate requirement with a singletransmit singlereceive antenna wireless system if the product of bandwidth (measured in Hz) and spectral efficiency (measured in bps/Hz) is equal to 10 9. As we shall outline in this paper, a variety of cost, technology and regulatory constraints make such a brute force solution unattractive if not impossible. The use of multiple antennas at transmitter and receiver, popularly known as multipleinput multipleoutput (MIMO) wireless is an emerging costeffective technology that offers substantial leverages in making 1Gbps wireless links a reality. This paper provides an overview of MIMO wireless technology covering channel models, performance limits, coding, and transceiver design.
On the Complexity of Sphere Decoding in Digital Communications
 IN DIGITAL COMMUNICATIONS,” IEEE TRANSACTIONS ON SIGNAL PROCESSING, TO APPEAR
, 2005
"... ..."