Results 1 - 10
of
343
Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach
- DATA MINING AND KNOWLEDGE DISCOVERY
, 2004
"... Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still co ..."
Abstract
-
Cited by 1752 (64 self)
- Add to MetaCart
Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist a large number of patterns and/or long patterns. In this study, we propose a novel
frequent-pattern tree
(FP-tree) structure, which is an extended prefix-tree
structure for storing compressed, crucial information about frequent patterns, and develop an efficient FP-tree-
based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth.
Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a condensed,
smaller data structure, FP-tree which avoids costly, repeated database scans, (2) our FP-tree-based mining adopts
a pattern-fragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a
partitioning-based, divide-and-conquer method is used to decompose the mining task into a set of smaller tasks for
mining confined patterns in conditional databases, which dramatically reduces the search space. Our performance
study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns,
and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported
new frequent-pattern mining methods
A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
- Genome Informatics
, 2002
"... Feature selection plays an important role in classification. We present a comparative study on six feature selection heuristics by applying them to two sets of data. The first set of data are gene expression profiles from Acute Lymphoblastic Leukemia (ALL) patients. The second set of data are proteo ..."
Abstract
-
Cited by 106 (6 self)
- Add to MetaCart
(Show Context)
Feature selection plays an important role in classification. We present a comparative study on six feature selection heuristics by applying them to two sets of data. The first set of data are gene expression profiles from Acute Lymphoblastic Leukemia (ALL) patients. The second set of data are proteomic patterns from ovarian cancer patients. Based on features chosen by these methods, error rates of several classification algorithms were obtained for analysis. Our results demonstrate the importance of feature selection in accurately classifying new samples.
Cost-sensitive boosting for classification of imbalanced data
, 2007
"... Classification of data with imbalanced class distribution has posed a significant drawback of the performance attainable by most standard classifier learning algorithms, which assume a relatively balanced class distribution and equal misclassification costs. The significant difficulty and frequent o ..."
Abstract
-
Cited by 77 (1 self)
- Add to MetaCart
(Show Context)
Classification of data with imbalanced class distribution has posed a significant drawback of the performance attainable by most standard classifier learning algorithms, which assume a relatively balanced class distribution and equal misclassification costs. The significant difficulty and frequent occurrence of the class imbalance problem indicate the need for extra research efforts. The objective of this paper is to investigate meta-techniques applicable to most classifier learning algorithms, with the aim to advance the classification of imbalanced data. The AdaBoost algorithm is reported as a successful meta-technique for improving classification accuracy. The insight gained from a comprehensive analysis of the AdaBoost algorithm in terms of its advantages and shortcomings in tacking the class imbalance problem leads to the exploration of three cost-sensitive boosting algorithms, which are developed by introducing cost items into the learning framework of AdaBoost. Further analysis shows that one of the proposed algorithms tallies with the stagewise additive modelling in statistics to minimize the cost exponential loss. These boosting algorithms are also studied with respect to their weighting strategies towards different types of samples, and their effectiveness in identifying rare cases through experiments on several real world medical data sets, where the class imbalance problem prevails.
The Levelwise Version Space Algorithm and its Application to Molecular Fragment Finding
"... A tight integration of Mitchell's version space algorithm with Agrawal et al.'s Apriori algorithm is presented. The algorithm can be used to generate patterns that satisfy a variety of constraints on data. Constraints that can be impoesed on... ..."
Abstract
-
Cited by 75 (7 self)
- Add to MetaCart
A tight integration of Mitchell's version space algorithm with Agrawal et al.'s Apriori algorithm is presented. The algorithm can be used to generate patterns that satisfy a variety of constraints on data. Constraints that can be impoesed on...
Mining significant graph patterns by leap search
- in SIGMOD ’08
"... With ever-increasing amounts of graph data from disparate sources, there has been a strong need for exploiting significant graph patterns with user-specified objective functions. Most objective functions are not antimonotonic, which could fail all of frequency-centric graph mining algorithms. In thi ..."
Abstract
-
Cited by 69 (17 self)
- Add to MetaCart
(Show Context)
With ever-increasing amounts of graph data from disparate sources, there has been a strong need for exploiting significant graph patterns with user-specified objective functions. Most objective functions are not antimonotonic, which could fail all of frequency-centric graph mining algorithms. In this paper, we give the first comprehensive study on general mining method aiming to find most significant patterns directly. Our new mining framework, called LEAP(Descending Leap Mine), is developed to exploit the correlation between structural similarity and significance similarity in a way that the most significant pattern could be identified quickly by searching dissimilar graph patterns. Two novel concepts, structural leap search and frequency descending mining, are proposed to support leap search in graph pattern space. Our new mining method revealed that the widely adopted branch-and-bound search in data mining literature is indeed not the best, thus sketching a new picture on scalable graph pattern discovery. Empirical results show that LEAP achieves orders of magnitude speedup in comparison with the state-of-the-art method. Furthermore, graph classifiers built on mined patterns outperform the up-to-date graph kernel method in terms of efficiency and accuracy, demonstrating the high promise of such patterns.
Discovering significant patterns
, 2007
"... Pattern discovery techniques, such as association rule discovery, explore large search spaces of potential patterns to find those that satisfy some user-specified constraints. Due to the large number of patterns considered, they suffer from an extreme risk of type-1 error, that is, of finding patter ..."
Abstract
-
Cited by 61 (4 self)
- Add to MetaCart
(Show Context)
Pattern discovery techniques, such as association rule discovery, explore large search spaces of potential patterns to find those that satisfy some user-specified constraints. Due to the large number of patterns considered, they suffer from an extreme risk of type-1 error, that is, of finding patterns that appear due to chance alone to satisfy the constraints on the sample data. This paper proposes techniques to overcome this problem by applying well-established statistical practices. These allow the user to enforce a strict upper limit on the risk of experimentwise error. Empirical studies demonstrate that standard pattern discovery techniques can discover numerous spurious patterns when applied to random data and when applied to real-world data result in large numbers of patterns that are rejected when subjected to sound statistical evaluation. They also reveal that a number of pragmatic choices about how such tests are performed can greatly affect their power.
On Detecting Differences Between Groups
, 2003
"... Understanding the differences between contrasting groups is a fundamental task in data analysis. This realization has led to the development of a new special purpose data mining technique, contrast-set mining. We undertook a study with a retail collaborator to compare contrast-set mining with existi ..."
Abstract
-
Cited by 53 (2 self)
- Add to MetaCart
(Show Context)
Understanding the differences between contrasting groups is a fundamental task in data analysis. This realization has led to the development of a new special purpose data mining technique, contrast-set mining. We undertook a study with a retail collaborator to compare contrast-set mining with existing rule-discovery techniques. To our surprise we observed that straightforward application of an existing commercial rule-discovery system, Magnum Opus, could successfully perform the contrast-set-mining task. This led to the realization that contrast-set mining is a special case of the more general rule-discovery task. We present the results of our study together with a proof of this conclusion.
Making Use of the Most Expressive Jumping Emerging Patterns for Classification
- Knowl. Inf. Syst
, 2000
"... . Classification aims to discover a model from training data that can be used to predict the class of test instances. In this paper, we propose the use of jumping emerging patterns (JEPs) as the basis for a new classifier called the JEP-Classifier. Each JEP can capture some crucial difference bet ..."
Abstract
-
Cited by 50 (10 self)
- Add to MetaCart
(Show Context)
. Classification aims to discover a model from training data that can be used to predict the class of test instances. In this paper, we propose the use of jumping emerging patterns (JEPs) as the basis for a new classifier called the JEP-Classifier. Each JEP can capture some crucial difference between a pair of datasets. Then, aggregating all JEPs of large supports can produce more potent classification power. Procedurally, the JEP-Classifier learns the pair-wise features (sets of JEPs) contained in the training data, and uses the collective impacts contributed by the most expressive pair-wise features to determine the class labels of the test data. Using only the most expressive JEPs in the JEP-Classifier strengthens its resistance to noise in the training data, and reduces its complexity (as there are usually a very large number of JEPs). We use two algorithms for constructing the JEP-Classifier which are both scalable and efficient. These algorithms make use of the border...
Interestingness of Frequent Itemsets Using Bayesian Networks as Background Knowledge
- In Proceedings of the SIGKDD Conference on Knowledge Discovery and Data Mining
, 2004
"... ..."
(Show Context)