Results 1  10
of
72
The price of stability for network design with fair cost allocation
 In Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
, 2004
"... Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite differ ..."
Abstract

Cited by 281 (30 self)
 Add to MetaCart
(Show Context)
Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of selfinterested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite different from the centrally enforced optimum. We study the quality of the best Nash equilibrium, and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash equilibrium solution has a natural meaning of stability in this context — it is the optimal solution that can be proposed from which no user will defect. We consider the price of stability for network design with respect to one of the most widelystudied protocols for network cost allocation, in which the cost of each edge is divided equally between users whose connections make use of it; this fairdivision scheme can be derived from the Shapley value, and has a number of basic economic motivations. We show that the price of stability for network design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a good Nash equilibrium can be achieved via bestresponse dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful mechanism for inducing strategic behavior to form nearoptimal equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley, and extend our results to cases in which users are seeking to balance network design costs with latencies in the constructed network, with stronger results when the network has only delays and no construction costs. We also present bounds on the convergence time of bestresponse dynamics, and discuss extensions to a weighted game.
Selfish Routing and the Price of Anarchy
 MATHEMATICAL PROGRAMMING SOCIETY NEWSLETTER
, 2007
"... Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this in ..."
Abstract

Cited by 255 (11 self)
 Add to MetaCart
Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worstpossible severity of a phenomenon called Braess’s Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author’s PhD thesis, but also discusses several more recent results in the area.
The Price of Anarchy of Finite Congestion Games
 In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC
, 2005
"... Abstract We consider the price of anarchy of pure Nash equilibria in congestion games with linearlatency functions. For asymmetric games, the price of anarchy of maximum social cost is \Theta (p N),where N is the number of players. For all other cases of symmetric or asymmetric games andfor both max ..."
Abstract

Cited by 165 (6 self)
 Add to MetaCart
(Show Context)
Abstract We consider the price of anarchy of pure Nash equilibria in congestion games with linearlatency functions. For asymmetric games, the price of anarchy of maximum social cost is \Theta (p N),where N is the number of players. For all other cases of symmetric or asymmetric games andfor both maximum and average social cost, the price of anarchy is 5 /2. We extend the results tolatency functions that are polynomials of bounded degree. We also extend some of the results to mixed Nash equilibria.
The price of routing unsplittable flow
 In Proc. 37th Symp. Theory of Computing (STOC
, 2005
"... The essence of the routing problem in real networks is that the traffic demand from a source to destination must be satisfied by choosing a single path between source and destination. The splittable version of this problem is when demand can be satisfied by many paths, namely a flow from source to d ..."
Abstract

Cited by 140 (3 self)
 Add to MetaCart
(Show Context)
The essence of the routing problem in real networks is that the traffic demand from a source to destination must be satisfied by choosing a single path between source and destination. The splittable version of this problem is when demand can be satisfied by many paths, namely a flow from source to destination. The unsplittable, or discrete version of the problem is more realistic yet is more complex from the algorithmic point of view; in some settings optimizing such unsplittable traffic flow is computationally intractable. In this paper, we assume this more realistic unsplittable model, and investigate the ”price of anarchy”, or deterioration of network performance measured in total traffic latency under the selfish user behavior. We show that for linear edge latency functions the price of anarchy is exactly 2.618 for weighted demand and exactly 2.5 for unweighted demand. These results are easily extended to (weighted or unweighted) atomic ”congestion games”, where paths are replaced by general subsets. We also show that for polynomials of degree d edge latency functions the price of anarchy is dΘ(d). Our results hold also for mixed strategies. Previous results of Roughgarden and Tardos showed that for linear edge latency functions the price of anarchy is exactly 4 3 under the assumption that each user controls only a negligible fraction of the overall traffic (this result also holds for the splittable case). Note that under the assumption of negligible traffic pure and mixed strategies are equivalent and also splittable and unsplittable models are equivalent. 1
Intrinsic Robustness of the Price of Anarchy
 STOC'09
, 2009
"... The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium ..."
Abstract

Cited by 101 (12 self)
 Add to MetaCart
(Show Context)
The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium. This drawback motivates the search for inefficiency bounds that apply more generally to weaker notions of equilibria, such as mixed Nash and correlated equilibria; or to sequences of outcomes generated by natural experimentation strategies, such as successive best responses or simultaneous regretminimization. We prove a general and fundamental connection between the price of anarchy and its seemingly stronger relatives in classes of games with a sum objective. First, we identify a “canonical sufficient condition ” for an upper bound of the POA for pure Nash equilibria, which we call a smoothness argument. Second, we show that every bound derived via a smoothness argument extends automatically, with no quantitative degradation in the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function value of regretminimizing players (or “price of total anarchy”). Smoothness arguments also have automatic implications for the inefficiency of approximate and BayesianNash equilibria and, under mild additional assumptions, for bicriteria bounds and for polynomiallength bestresponse sequences. We also identify classes of games — most notably, congestion games with cost functions restricted to an arbitrary fixed set — that are tight, in the sense that smoothness arguments are guaranteed to produce an optimal worstcase upper bound on the POA, even for the smallest set of interest (pure Nash equilibria). Byproducts of our proof of this result include the first tight bounds on the POA in congestion games with nonpolynomial cost functions, and the first
On the price of anarchy and stability of correlated equilibria of linear congestion games
, 2005
"... ..."
Regret minimization and the price of total anarchy
, 2008
"... We propose weakening the assumption made when studying the price of anarchy: Rather than assume that selfinterested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret ..."
Abstract

Cited by 59 (10 self)
 Add to MetaCart
(Show Context)
We propose weakening the assumption made when studying the price of anarchy: Rather than assume that selfinterested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret minimization can be done via simple, efficient algorithms even in many settings where the number of action choices for each player is exponential in the natural parameters of the problem. We prove that despite our weakened assumptions, in several broad classes of games, this “price of total anarchy” matches the Nash price of anarchy, even though play may never converge to Nash equilibrium. In contrast to the price of anarchy and the recently introduced price of sinking [15], which require all players to behave in a prescribed manner, we show that the price of total anarchy is in many cases resilient to the presence of Byzantine players, about whom we make no assumptions. Finally, because the price of total anarchy is an upper bound on the price of anarchy even in mixed strategies, for some games our results yield as corollaries previously unknown bounds on the price of anarchy in mixed strategies.
A network pricing game for selfish traffic
 in Proc. of SIGACTSIGOPS Symposium on Principles of Distributed Computing (PODC
, 2005
"... The success of the Internet is remarkable in light of the decentralized manner in which it is designed and operated. Unlike small scale networks, the Internet is built and controlled by a large number of disperate service providers who are not interested in any global optimization. Instead, provider ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
The success of the Internet is remarkable in light of the decentralized manner in which it is designed and operated. Unlike small scale networks, the Internet is built and controlled by a large number of disperate service providers who are not interested in any global optimization. Instead, providers simply seek to maximize their own profit by charging users for access to their service. Users themselves also behave selfishly, optimizing over price and quality of service. Game theory provides a natural framework for the study of such a situation. However, recent work in this area tends to focus on either the service providers or the network users, but not both. This paper introduces a new model for exploring the interaction of these two elements, in which network managers compete for users via prices and the quality of service provided. We study the extent to which competition between service providers hurts the overall social utility of the system.
Coordination Mechanisms for Selfish Scheduling
, 2006
"... In machine scheduling, a set of jobs must be scheduled on a set of machines so as to minimize some global objective function, such as the makespan considered in this paper. In practice, jobs are often controlled by independent, selfishly acting agents, each of which selects a machine for processing ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
(Show Context)
In machine scheduling, a set of jobs must be scheduled on a set of machines so as to minimize some global objective function, such as the makespan considered in this paper. In practice, jobs are often controlled by independent, selfishly acting agents, each of which selects a machine for processing that minimizes the (expected) completion time of its job. This scenario can be formalized as a game in which the players are job owners, the strategies are machines, and the disutility to each player in a strategy profile is the completion time of its job in the corresponding schedule. The equilibria of these games may result in largerthanoptimal overall makespan. The price of anarchy is the ratio of the worstcase equilibrium makespan to the optimal makespan. In this paper, we design and analyze scheduling policies, or coordination mechanisms, for machines which aim to minimize the price of anarchy (restricted to pure Nash equilibria) of the corresponding game. We study coordination mechanisms for four classes of multiprocessor machine scheduling problems and derive upper and lower bounds for the price of anarchy of these mechanisms. For several of the proposed mechanisms, we are also able to prove that the system converges to a purestrategy Nash equilibrium in a linear number of rounds. Finally, we note that our results are applicable to several practical problems arising in communication networks.
Tight bounds for selfish and greedy load balancing
 ICALP 2006. LNCS
, 2006
"... Abstract. We study the load balancing problem in the context of a set of clients each wishing to run a job on a server selected among a subset of permissible servers for the particular client. We consider two different scenarios. In selfish load balancing, each client is selfish in the sense that it ..."
Abstract

Cited by 43 (6 self)
 Add to MetaCart
(Show Context)
Abstract. We study the load balancing problem in the context of a set of clients each wishing to run a job on a server selected among a subset of permissible servers for the particular client. We consider two different scenarios. In selfish load balancing, each client is selfish in the sense that it selects to run its job to the server among its permissible servers having the smallest latency given the assignments of the jobs of other clients to servers. In online load balancing, clients appear online and, when a client appears, it has to make an irrevocable decision and assign its job to one of its permissible servers. Here, we assume that the clients aim to optimize some global criterion but in an online fashion. A natural local optimization criterion that can be used by each client when making its decision is to assign its job to that server that gives the minimum increase of the global objective. This gives rise to greedy online solutions. The aim of this paper is to determine how much the quality of load balancing is affected by selfishness and greediness. We characterize almost completely the impact of selfishness and greediness in load balancing by presenting new and improved, tight or almost tight bounds on the price of anarchy and price of stability of selfish load balancing as well as on the competitiveness of the greedy algorithm for online load balancing when the objective is to minimize the total latency of all clients on servers with linear latency functions. 1