Results 1  10
of
10
Compressive Phase Retrieval via Generalized Approximate Message Passing
"... Abstract—In this paper, we propose a novel approach to compressive phase retrieval based on loopy belief propagation and, in particular, on the generalized approximate message passing (GAMP) algorithm. Numerical results show that the proposed PRGAMP algorithm has excellent phasetransition behavior ..."
Abstract

Cited by 30 (8 self)
 Add to MetaCart
(Show Context)
Abstract—In this paper, we propose a novel approach to compressive phase retrieval based on loopy belief propagation and, in particular, on the generalized approximate message passing (GAMP) algorithm. Numerical results show that the proposed PRGAMP algorithm has excellent phasetransition behavior, noise robustness, and runtime. In particular, for successful recovery of synthetic BernoullicircularGaussian signals, PRGAMP requires ≈ 4 times the number of measurements as a phaseoracle version of GAMP and, at moderate to large SNR, the NMSE of PRGAMP is only ≈ 3 dB worse than that of phaseoracle GAMP. A comparison to the recently proposed convexrelation approach known as “CPRL ” reveals PRGAMP’s superior phase transition and ordersofmagnitude faster runtimes, especially as the problem dimensions increase. When applied to the recovery of a 65kpixel grayscale image from 32k randomly masked magnitude measurements, numerical results show a median PRGAMP runtime of only 13.4 seconds. A. Phase retrieval I.
Phase Retrieval via Wirtinger Flow: Theory and Algorithms
, 2014
"... We study the problem of recovering the phase from magnitude measurements; specifically, we wish to reconstruct a complexvalued signal x ∈ Cn about which we have phaseless samples of the form yr = ∣⟨ar,x⟩∣2, r = 1,...,m (knowledge of the phase of these samples would yield a linear system). This pape ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
We study the problem of recovering the phase from magnitude measurements; specifically, we wish to reconstruct a complexvalued signal x ∈ Cn about which we have phaseless samples of the form yr = ∣⟨ar,x⟩∣2, r = 1,...,m (knowledge of the phase of these samples would yield a linear system). This paper develops a nonconvex formulation of the phase retrieval problem as well as a concrete solution algorithm. In a nutshell, this algorithm starts with a careful initialization obtained by means of a spectral method, and then refines this initial estimate by iteratively applying novel update rules, which have low computational complexity, much like in a gradient descent scheme. The main contribution is that this algorithm is shown to rigorously allow the exact retrieval of phase information from a nearly minimal number of random measurements. Indeed, the sequence of successive iterates provably converges to the solution at a geometric rate so that the proposed scheme is efficient both in terms of computational and data resources. In theory, a variation on this scheme leads to a nearlinear time algorithm for a physically realizable model based on coded diffraction patterns. We illustrate the effectiveness of our methods with various experiments on image data. Underlying our analysis are insights for the analysis of nonconvex optimization schemes that may have implications for computational problems beyond phase retrieval.
EXACT AND STABLE RECOVERY OF ROTATIONS FOR ROBUST SYNCHRONIZATION
, 1211
"... Abstract. The synchronization problem over the special orthogonal group SO(d) consists of estimating a set of unknown rotations R1, R2,..., Rn from noisy measurements of a subset of their pairwise ratios R −1 i Rj. The problem has found applications in computer vision, computer graphics, and sensor ..."
Abstract

Cited by 22 (9 self)
 Add to MetaCart
(Show Context)
Abstract. The synchronization problem over the special orthogonal group SO(d) consists of estimating a set of unknown rotations R1, R2,..., Rn from noisy measurements of a subset of their pairwise ratios R −1 i Rj. The problem has found applications in computer vision, computer graphics, and sensor network localization, among others. Its least squares solution can be approximated by either spectral relaxation or semidefinite programming followed by a rounding procedure, analogous to the approximation algorithms of MaxCut. The contribution of this paper is threefold: First, we introduce a robust penalty function involving the sum of unsquared deviations and derive a relaxation that leads to a convex optimization problem; Second, we apply the alternating direction method to minimize the penalty function; Finally, under a specific model of the measurement noise and the measurement graph, we prove that the rotations are exactly and stably recovered, exhibiting a phase transition behavior in terms of the proportion of noisy measurements. Numerical simulations confirm the phase transition behavior for our method as well as its improved accuracy compared to existing methods. Key words. Synchronization of rotations; least unsquared deviation; semidefinite relaxation; and alternating direction method 1. Introduction. The
Phase Retrieval from Coded Diffraction Patterns
, 2013
"... This paper considers the question of recovering the phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We study a physically realistic setup where one can modulate the signal of interest and then collect the inten ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
This paper considers the question of recovering the phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We study a physically realistic setup where one can modulate the signal of interest and then collect the intensity of its diffraction pattern, each modulation thereby producing a sort of coded diffraction pattern. We show that PhaseLift, a recent convex programming technique, recovers the phase information exactly from a number of random modulations, which is polylogarithmic in the number of unknowns. Numerical experiments with noiseless and noisy data complement our theoretical analysis and illustrate our approach.
Tightness of the maximum likelihood semidefinite relaxation for angular synchronization. Available online at arXiv:1411.3272 [math.OC
, 2014
"... Abstract Many maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. Semidefinite relaxations are among the most popular. Sometimes, the relaxations turn out ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract Many maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. Semidefinite relaxations are among the most popular. Sometimes, the relaxations turn out to be tight. In this paper, we study such a phenomenon. The angular synchronization problem consists in estimating a collection of n phases, given noisy measurements of some of the pairwise relative phases. The MLE for the angular synchronization problem is the solution of a (hard) nonbipartite Grothendieck problem over the complex numbers. It is known that its semidefinite relaxation enjoys worstcase approximation guarantees. In this paper, we consider a stochastic model on the input of that semidefinite relaxation. We assume there is a planted signal (corresponding to a ground truth set of phases) and the measurements are corrupted with random noise. Even though the MLE does not coincide with the planted signal, we show that the relaxation is, with high probability, tight. This holds even for high levels of noise. This analysis explains, for the interesting case of angular synchronization, a phenomenon which has been observed without explanation in many other settings. Namely, the fact that even when exact recovery of the ground truth is impossible, semidefinite relaxations for the MLE tend to be tight (in favorable noise regimes).
Algorithms and theory for clustering . . .
, 2014
"... In this dissertation we discuss three problems characterized by hidden structure or information. The first part of this thesis focuses on extracting subspace structures from data. Subspace Clustering is the problem of finding a multisubspace representation that best fits a collection of points tak ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In this dissertation we discuss three problems characterized by hidden structure or information. The first part of this thesis focuses on extracting subspace structures from data. Subspace Clustering is the problem of finding a multisubspace representation that best fits a collection of points taken from a highdimensional space. As with most clustering problems, popular techniques for subspace clustering are often difficult to analyze theoretically as they are often nonconvex in nature. Theoretical analysis of these algorithms becomes even more challenging in the presence of noise and missing data. We introduce a collection of subspace clustering algorithms, which are tractable and provably robust to various forms of data imperfections. We further illustrate our methods with numerical experiments on a wide variety of data segmentation problems. In the second part of the thesis, we consider the problem of recovering the seemingly hidden phase of an object from intensityonly measurements, a problem which naturally appears in Xray crystallography and related disciplines. We formulate the
Analysis of an Exact
 Fractional Step Method, J. Comp. Physics
"... and stable recovery of rotations for robust synchronization R ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
and stable recovery of rotations for robust synchronization R
Undersampled Phase Retrieval with Outliers
 SUBMITTED TO IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING
, 2014
"... ..."
Tightness of the maximum likelihood semidefinite relaxation for angular synchronization
, 2014
"... Many maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. Semidefinite relaxations are among the most popular. Sometimes, the relaxations turn out to be tig ..."
Abstract
 Add to MetaCart
Many maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. Semidefinite relaxations are among the most popular. Sometimes, the relaxations turn out to be tight. In this paper, we study such a phenomenon. The angular synchronization problem consists in estimating a collection of n phases, given noisy measurements of some of the pairwise relative phases. The MLE for the angular synchronization problem is the solution of a (hard) nonbipartite Grothendieck problem over the complex numbers. It is known that its semidefinite relaxation enjoys worstcase approximation guarantees. In this paper, we consider a stochastic model on the input of that semidefinite relaxation. We assume there is a planted signal (corresponding to a ground truth set of phases) and the measurements are corrupted with random noise. Even though the MLE does not coincide with the planted signal, we show that the relaxation is, with high probability, tight. This holds even for high levels of noise. This analysis explains, for the interesting case of angular synchronization, a phenomenon which has been observed without explanation in many other settings. Namely, the fact that even when exact recovery of the ground truth is impossible, semidefinite relaxations for the MLE tend to be tight (in favorable noise regimes).