Results 1 - 10
of
778
A theory of timed automata
, 1999
"... Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis of ..."
Abstract
-
Cited by 2651 (32 self)
- Add to MetaCart
(Show Context)
Model checking is emerging as a practical tool for automated debugging of complex reactive systems such as embedded controllers and network protocols (see [23] for a survey). Traditional techniques for model checking do not admit an explicit modeling of time, and are thus, unsuitable for analysis of real-time systems whose correctness depends on relative magnitudes of different delays. Consequently, timed automata [7] were introduced as a formal notation to model the behavior of real-time systems. Its definition provides a simple way to annotate state-transition graphs with timing constraints using finitely many real-valued clock variables. Automated analysis of timed automata relies on the construction of a finite quotient of the infinite space of clock valuations. Over the years, the formalism has been extensively studied leading to many results establishing connections to circuits and logic, and much progress has been made in developing verification algorithms, heuristics, and tools. This paper provides a survey of the theory of timed automata, and their role in specification and verification of real-time systems.
The Theory of Hybrid Automata
, 1996
"... A hybrid automaton is a formal model for a mixed discrete-continuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discrete-continuous state spaces that was previously studied on pur ..."
Abstract
-
Cited by 685 (12 self)
- Add to MetaCart
A hybrid automaton is a formal model for a mixed discrete-continuous system. We classify hybrid automata acoording to what questions about their behavior can be answered algorithmically. The classification reveals structure on mixed discrete-continuous state spaces that was previously studied on purely discrete state spaces only. In particular, various classes of hybrid automata induce finitary trace equivalence (or similarity, or bisimilarity) relations on an uncountable state space, thus permitting the application of various model-checking techniques that were originally developed for finite-state systems.
HyTech: A Model Checker for Hybrid Systems
- Software Tools for Technology Transfer
, 1997
"... A hybrid system is a dynamical system whose behavior exhibits both discrete and continuous change. A hybrid automaton is a mathematical model for hybrid systems, which combines, in a single formalism, automaton transitions for capturing discrete change with differential equations for capturing conti ..."
Abstract
-
Cited by 473 (6 self)
- Add to MetaCart
(Show Context)
A hybrid system is a dynamical system whose behavior exhibits both discrete and continuous change. A hybrid automaton is a mathematical model for hybrid systems, which combines, in a single formalism, automaton transitions for capturing discrete change with differential equations for capturing continuous change. HyTech is a symbolic model checker for linear hybrid automata, a subclass of hybrid automata that can be analyzed automatically by computing with polyhedral state sets. A key feature of HyTech is its ability to perform parametric analysis, i.e. to determine the values of design parameters for which a linear hybrid automaton satisfies a temporal-logic requirement. 1 Introduction A hybrid system typically consists of a collection of digital programs that interact with each other and with an analog environment. Examples of hybrid systems include manufacturing controllers, automotive and flight controllers, medical equipment, micro-electromechanical systems, and robots. When thes...
What's Decidable about Hybrid Automata?
- Journal of Computer and System Sciences
, 1995
"... . Hybrid automata model systems with both digital and analog components, such as embedded control programs. Many verification tasks for such programs can be expressed as reachability problems for hybrid automata. By improving on previous decidability and undecidability results, we identify a boundar ..."
Abstract
-
Cited by 377 (16 self)
- Add to MetaCart
. Hybrid automata model systems with both digital and analog components, such as embedded control programs. Many verification tasks for such programs can be expressed as reachability problems for hybrid automata. By improving on previous decidability and undecidability results, we identify a boundary between decidability and undecidability for the reachability problem of hybrid automata. On the positive side, we give an (optimal) PSPACE reachability algorithm for the case of initialized rectangular automata, where all analog variables follow independent trajectories within piecewise-linear envelopes and are reinitialized whenever the envelope changes. Our algorithm is based on the construction of a timed automaton that contains all reachability information about a given initialized rectangular automaton. The translation has practical significance for verification, because it guarantees the termination of symbolic procedures for the reachability analysis of initialized rectangular autom...
Reachability Analysis of Pushdown Automata: Application to Model-Checking
, 1997
"... We apply the symbolic analysis principle to pushdown systems. We represent (possibly infinite) sets of configurations of such systems by means of finite-state automata. In order to reason in a uniform way about analysis problems involving both existential and universal path quantification (like mode ..."
Abstract
-
Cited by 376 (38 self)
- Add to MetaCart
(Show Context)
We apply the symbolic analysis principle to pushdown systems. We represent (possibly infinite) sets of configurations of such systems by means of finite-state automata. In order to reason in a uniform way about analysis problems involving both existential and universal path quantification (like model-checking for branching-time logics), we consider the more general class of alternating pushdown systems and use alternating finite-state automata as a representation structure for their sets of configurations. We give a simple and natural procedure to compute sets of predecessors for this representation structure. We apply this procedure and the automata-theoretic approach to model-checking to define new model-checking algorithms for pushdown systems and both linear and branching-time properties. From these results we derive upper bounds for several model-checking problems, and we also provide matching lower bounds, using reductions based on some techniques introduced by Walukiewicz.
Automatic Symbolic Verification of Embedded Systems
, 1996
"... We present a model-checking procedure and its implementation for the automatic verification of embedded systems. The system components are described as Hybrid Automata -- communicating machines with finite control and real-valued variables that represent continuous environment parameters such as tim ..."
Abstract
-
Cited by 330 (24 self)
- Add to MetaCart
We present a model-checking procedure and its implementation for the automatic verification of embedded systems. The system components are described as Hybrid Automata -- communicating machines with finite control and real-valued variables that represent continuous environment parameters such as time, pressure, and temperature. The system requirements are specified in a temporal logic with stop watches, and verified by symbolic fixpoint computation. The verification procedure -- implemented in the Cornell Hybrid Technology Tool, HyTech -- applies to hybrid automata whose continuous dynamics is governed by linear constraints on the variables and their derivatives. We illustrate the method and the tool by checking safety, liveness, time-bounded, and duration requirements of digital controllers, schedulers, and distributed algorithms.
Conflict Resolution for Air Traffic Management: A Study in Multiagent Hybrid Systems
- IEEE TRANSACTIONS ON AUTOMATIC CONTROL
, 1998
"... Air Traffic Management (ATM) of the future allows for the possibility of free flight, in which aircraft choose their own optimal routes, altitudes, and velocities. The safe resolution of trajectory conflicts between aircraft is necessary to the success of such a distributed control system. In this p ..."
Abstract
-
Cited by 287 (50 self)
- Add to MetaCart
Air Traffic Management (ATM) of the future allows for the possibility of free flight, in which aircraft choose their own optimal routes, altitudes, and velocities. The safe resolution of trajectory conflicts between aircraft is necessary to the success of such a distributed control system. In this paper, we present a method to synthesize provably safe conflict resolution maneuvers. The method models the aircraft and the maneuver as a hybrid control system and calculates the maximal set of safe initial conditions for each aircraft so that separation is assured in the presence of uncertainties in the actions of the other aircraft. Examples of maneuvers using both speed and heading changes are worked out in detail.
Boolean and Cartesian Abstraction for Model Checking C Programs
, 2001
"... The problem of model checking a specification in form of a C program with recursive procedures and many thousands of lines of code has not been addressed before. In this paper, we show how we attack this problem using an abstraction that is formalized with the Cartesian abstraction. It is implemente ..."
Abstract
-
Cited by 194 (12 self)
- Add to MetaCart
The problem of model checking a specification in form of a C program with recursive procedures and many thousands of lines of code has not been addressed before. In this paper, we show how we attack this problem using an abstraction that is formalized with the Cartesian abstraction. It is implemented through a source-to-source transformation into a `Boolean' C program; we give an algorithm to compute the transformation with a cost that is exponential in its theoretical worst-case complexity but feasible in practice.
A Survey of Computational Complexity Results in Systems and Control
, 2000
"... The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fi ..."
Abstract
-
Cited by 187 (18 self)
- Add to MetaCart
The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fields. We begin with a brief introduction to models of computation, the concepts of undecidability, polynomial time algorithms, NP-completeness, and the implications of intractability results. We then survey a number of problems that arise in systems and control theory, some of them classical, some of them related to current research. We discuss them from the point of view of computational complexity and also point out many open problems. In particular, we consider problems related to stability or stabilizability of linear systems with parametric uncertainty, robust control, time-varying linear systems, nonlinear and hybrid systems, and stochastic optimal control.