Results 1  10
of
917
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3252 (70 self)
 Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
Symbolic Model Checking Using SAT Procedures instead of BDDs
 DAC 99
, 1999
"... In this paper, we study the application of propositional decision procedures in hardware verification. In particular, we apply bounded model checking, as introduced in [1], to equivalence and invariant checking. We present several optimizations that reduce the size of generated propositional formula ..."
Abstract

Cited by 329 (28 self)
 Add to MetaCart
(Show Context)
In this paper, we study the application of propositional decision procedures in hardware verification. In particular, we apply bounded model checking, as introduced in [1], to equivalence and invariant checking. We present several optimizations that reduce the size of generated propositional formulas. In many instances, our SATbased approach can significantly outperform BDDbased approaches. We observe that SATbased techniques are particularly efficient in detecting errors in both combinational and sequential designs.
Interpolation and SATbased model checking
, 2003
"... Abstract. We consider a fully SATbased method of unbounded symbolic model checking based on computing Craig interpolants. In benchmark studies using a set of large industrial circuit verification instances, this method is greatly more efficient than BDDbased symbolic model checking, and compares f ..."
Abstract

Cited by 285 (11 self)
 Add to MetaCart
(Show Context)
Abstract. We consider a fully SATbased method of unbounded symbolic model checking based on computing Craig interpolants. In benchmark studies using a set of large industrial circuit verification instances, this method is greatly more efficient than BDDbased symbolic model checking, and compares favorably to some recent SATbased model checking methods on positive instances. 1
NuSMV: A new symbolic model verifier
, 1999
"... 1 Introduction This paper describes NUSMV, a new symbolic model checker developed as a jointproject between Carnegie Mellon University (CMU) and Istituto per la Ricerca Scientifica e Tecnolgica (IRST). NUSMV is designed to be a well structured, open, flexibleand documented platform for model checkin ..."
Abstract

Cited by 229 (19 self)
 Add to MetaCart
1 Introduction This paper describes NUSMV, a new symbolic model checker developed as a jointproject between Carnegie Mellon University (CMU) and Istituto per la Ricerca Scientifica e Tecnolgica (IRST). NUSMV is designed to be a well structured, open, flexibleand documented platform for model checking. In order to make N USMV applicablein technology transfer projects, it was designed to be very robust, close to the standards
Bounded Model Checking Using Satisfiability Solving
 Formal Methods in System Design
, 2001
"... The phrase model checking refers to algorithms for exploring the state space of a transition system to determine if it obeys a specification of its intended behavior. These algorithms can perform exhaustive verification in a highly automatic manner, and, thus, have attracted much interest in indus ..."
Abstract

Cited by 195 (3 self)
 Add to MetaCart
The phrase model checking refers to algorithms for exploring the state space of a transition system to determine if it obeys a specification of its intended behavior. These algorithms can perform exhaustive verification in a highly automatic manner, and, thus, have attracted much interest in industry. Model checking programs are now being commercially marketed. However, model checking has been held back by the state explosion problem, which is the problem that the number of states in a system grows exponentially in the number of system components. Much research has been devoted to ameliorating this problem.
Lazy Satisfiability Modulo Theories
 JOURNAL ON SATISFIABILITY, BOOLEAN MODELING AND COMPUTATION 3 (2007) 141Â224
, 2007
"... Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingl ..."
Abstract

Cited by 189 (50 self)
 Add to MetaCart
(Show Context)
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingly important due to its applications in many domains in different communities, in particular in formal verification. An amount of papers with novel and very efficient techniques for SMT has been published in the last years, and some very efficient SMT tools are now available. Typical SMT (T) problems require testing the satisfiability of formulas which are Boolean combinations of atomic propositions and atomic expressions in T, so that heavy Boolean reasoning must be efficiently combined with expressive theoryspecific reasoning. The dominating approach to SMT (T), called lazy approach, is based on the integration of a SAT solver and of a decision procedure able to handle sets of atomic constraints in T (Tsolver), handling respectively the Boolean and the theoryspecific components of reasoning. Unfortunately, neither the problem of building an efficient SMT solver, nor even that
NUSMV: a new symbolic model checker
 International Journal on Software Tools for Technology Transfer
, 2000
"... This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of the CMU SMV model checker. The core of this paper consists of a detailed de ..."
Abstract

Cited by 169 (22 self)
 Add to MetaCart
This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of the CMU SMV model checker. The core of this paper consists of a detailed description of the NUSMV functionalities, architecture, and implementation.
Bounded model checking
, 2009
"... Besides Equivalence Checking [KK97, KPKG02] the most important industrial application of SAT is currently Bounded Model Checking (BMC) [BCCZ99]. Both techniques are used for formal hardware verification in the context of electronic design automation (EDA), but have successfully been applied to many ..."
Abstract

Cited by 165 (3 self)
 Add to MetaCart
Besides Equivalence Checking [KK97, KPKG02] the most important industrial application of SAT is currently Bounded Model Checking (BMC) [BCCZ99]. Both techniques are used for formal hardware verification in the context of electronic design automation (EDA), but have successfully been applied to many other domains as well. In this chapter, we focus on BMC. In practice, BMC is mainly used for falsification resp. testing, which is concerned with violations of temporal properties. However, the original paper on BMC [BCCZ99] already discussed extensions that can prove properties. A considerable part of this chapter discusses these complete extensions, which are often called “unbounded ” model checking techniques, even though they are build upon the same principles as plain BMC. Two further related applications, in which BMC becomes more and more important, are automatic test case generation for closing coverage holes, and disproving redundancy in designs. Most of the techniques discussed in this chapter transfer to this more general setting as well, even though our focus is on property
Applying SAT methods in unbounded symbolic model checking
, 2002
"... Abstract. A method of symbolic model checking is introduced that uses conjunctive normal form (CNF) rather than binary decision diagrams (BDD’s) and uses a SATbased approach to quantifier elimination. This method is compared to a traditional BDDbased model checking approach using a set of benchmar ..."
Abstract

Cited by 164 (2 self)
 Add to MetaCart
(Show Context)
Abstract. A method of symbolic model checking is introduced that uses conjunctive normal form (CNF) rather than binary decision diagrams (BDD’s) and uses a SATbased approach to quantifier elimination. This method is compared to a traditional BDDbased model checking approach using a set of benchmark problems derived from the compositional verification of a commercial microprocessor design. 1