Results 11  20
of
2,696
Imagebased visual hulls
 IN PROCEEDINGS OF ACM SIGGRAPH 2000
, 2000
"... In this paper, we describe an efficient imagebased approach to computing and shading visual hulls from silhouette image data. Our algorithm takes advantage of epipolar geometry and incremental computation to achieve a constant rendering cost per rendered pixel. It does not suffer from the computati ..."
Abstract

Cited by 339 (15 self)
 Add to MetaCart
(Show Context)
In this paper, we describe an efficient imagebased approach to computing and shading visual hulls from silhouette image data. Our algorithm takes advantage of epipolar geometry and incremental computation to achieve a constant rendering cost per rendered pixel. It does not suffer from the computation complexity, limited resolution, or quantization artifacts of previous volumetric approaches. We demonstrate the use of this algorithm in a realtime virtualized reality application running off a small number of video streams.
Octrees for faster isosurface generation
 IEEE TRANSACTIONS ON MEDICAL IMAGING
, 2000
"... The large size of many volume data sets often prevents visualization algorithms from providing interactive rendering. The use of hierarchical data structures can ameliorate this problem by storing summary information to prevent useless exploration of regions of little or no current interest within ..."
Abstract

Cited by 322 (3 self)
 Add to MetaCart
(Show Context)
The large size of many volume data sets often prevents visualization algorithms from providing interactive rendering. The use of hierarchical data structures can ameliorate this problem by storing summary information to prevent useless exploration of regions of little or no current interest within the volume. This paper discusses research into the use of the octree hierarchical data structure when the regions of current interest can vary during the application, and are not known a priori. Octrees are well suited to the sixsided cell structure of many volumes. A new spaceefficient design is introduced for octree representations of volumes whose resolutions are not conveniently a power of two; octrees following this design are called branchonneed octrees (BONOs). Also, a caching method is described that essentially passes information between octree neighbors whose visitation times may be quite different, then discards it when its useful life is over. Using the application of octrees to isosurface generation as a focus, space and time comparisons for octreebased versus more traditional "marching" methods are presented.
Comprehensible Rendering of 3D Shapes
, 1990
"... We propose a new rendering technique that produces 3D images with enhanced visual comprehensibility. Shape features can be readily understood if certain geometric properties are enhanced. To achieve this, we develop drawing algorithms for discontinuities, edges, contour lines, and curved hatchin ..."
Abstract

Cited by 293 (0 self)
 Add to MetaCart
(Show Context)
We propose a new rendering technique that produces 3D images with enhanced visual comprehensibility. Shape features can be readily understood if certain geometric properties are enhanced. To achieve this, we develop drawing algorithms for discontinuities, edges, contour lines, and curved hatching. All of them are realized with 2D image processing operations instead of line tracking processes, so that they can be efficiently combined with conventional surface rendering algorithms. Data about the geometric properties of the surfaces are preserved as Geometric Buffers (Gbuffers). Each Gbuffer contains one geometric property such as the depth or the normal vector of each pixel. By using Gbuffers as intermediate results, artificial enhancement processes are separated from geometric processes (projection and hidden surface removal) and physical processes (shading and texture mapping), and performed as postprocesses. This permits a user to rapidly examine various combinations of enhancement techniques without excessive recompntation, and easily obtain the most comprehensible image. Our method can be widely applied for various purposes. Several of these, edge enhancement, line drawing illustrations, topographical maps, medical imaging, and surface analysis, are presented in this paper.
The ballpivoting algorithm for surface reconstruction.
 IEEE TRansactions on Visualization and Computer Graphics,
, 1999
"... ..."
KinectFusion: RealTime Dense Surface Mapping and Tracking
"... We present a system for accurate realtime mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving lowcost depth camera and commodity graphics hardware. We fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface mo ..."
Abstract

Cited by 280 (25 self)
 Add to MetaCart
We present a system for accurate realtime mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving lowcost depth camera and commodity graphics hardware. We fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in realtime. The current sensor pose is simultaneously obtained by tracking the live depth frame relative to the global model using a coarsetofine iterative closest point (ICP) algorithm, which uses all of the observed depth data available. We demonstrate the advantages of tracking against the growing full surface model compared with frametoframe tracking, obtaining tracking and mapping results
ParticleBased Fluid Simulation for Interactive Applications
, 2003
"... Realistically animated fluids can add substantial realism to interactive applications such as virtual surgery simulators or computer games. In this paper we propose an interactive method based on Smoothed Particle Hydrodynamics (SPH) to simulate fluids with free surfaces. The method is an extension ..."
Abstract

Cited by 280 (11 self)
 Add to MetaCart
Realistically animated fluids can add substantial realism to interactive applications such as virtual surgery simulators or computer games. In this paper we propose an interactive method based on Smoothed Particle Hydrodynamics (SPH) to simulate fluids with free surfaces. The method is an extension of the SPHbased technique by Desbrun to animate highly deformable bodies. We gear the method towards fluid simulation by deriving the force density fields directly from the NavierStokes equation and by adding a term to model surface tension effects. In contrast to Eulerian gridbased approaches, the particlebased approach makes mass conservation equations and convection terms dispensable which reduces the complexity of the simulation. In addition, the particles can directly be used to render the surface of the fluid. We propose methods to track and visualize the free surface using point splatting and marching cubesbased surface reconstruction. Our animation method is fast enough to be used in interactive systems and to allow for user interaction with models consisting of up to 5000 particles.
A Polygonal Approximation to Direct Scalar Volume Rendering
 Computer Graphics
, 1990
"... One method of directly rendering a threedimensional volume of scalar data is to project each cell in a volume onto the screen. Rasterizing a volume cell is more complex than rasterizing a polygon. A method is presented that approximates tetrahedral volume cells with hardware renderable transparent ..."
Abstract

Cited by 250 (3 self)
 Add to MetaCart
One method of directly rendering a threedimensional volume of scalar data is to project each cell in a volume onto the screen. Rasterizing a volume cell is more complex than rasterizing a polygon. A method is presented that approximates tetrahedral volume cells with hardware renderable transparent triangles. This method produces results which are visually similar to more exact methods for scalar volume rendering, but is faster and has smaller memory requirements. The method is best suited for display of smoothlychanging data. CR Categories and Subject Descriptors: I.3.0 [Computer Graphics]: General; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling. Additional Key Words and Phrases: Volume rendering, scientific visualization. 1 Introduction Display of threedimensional scalar volumes has recently become an active area of research. A scalar volume is described by some function f(x; y; z) defined over some region R of threedimensional space. In many scientific ap...
Object Shape and Reflectance Modeling from Observation
, 1997
"... An object model for computer graphics applications should contain two aspects of information: shape and reflectance properties of the object. A number of techniques have been developed for modeling object shapes by observing real objects. In contrast, attempts to model reflectance properties of real ..."
Abstract

Cited by 221 (17 self)
 Add to MetaCart
(Show Context)
An object model for computer graphics applications should contain two aspects of information: shape and reflectance properties of the object. A number of techniques have been developed for modeling object shapes by observing real objects. In contrast, attempts to model reflectance properties of real objects have been rather limited. In most cases, modeled reflectance properties are too simple or too complicated to be used for synthesizing realistic images of the object. In this paper, we propose a new method for modeling object reflectance properties, as well as object shapes, by observing real objects. First, an object surface shape is reconstructed by merging multiple range images of the object. By using the reconstructed object shape and a sequence of color images of the object, parameters of a reflection model are estimated in a robust manner. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.
A near optimal isosurface extraction algorithm using the span space.
 IEEE Transactions on Visualization and Computer Graphics
, 1996
"... ..."