Results 1 - 10
of
119
On Lattices, Learning with Errors, Random Linear Codes, and Cryptography
- In STOC
, 2005
"... Our main result is a reduction from worst-case lattice problems such as SVP and SIVP to a certain learning problem. This learning problem is a natural extension of the ‘learning from parity with error’ problem to higher moduli. It can also be viewed as the problem of decoding from a random linear co ..."
Abstract
-
Cited by 364 (6 self)
- Add to MetaCart
(Show Context)
Our main result is a reduction from worst-case lattice problems such as SVP and SIVP to a certain learning problem. This learning problem is a natural extension of the ‘learning from parity with error’ problem to higher moduli. It can also be viewed as the problem of decoding from a random linear code. This, we believe, gives a strong indication that these problems are hard. Our reduction, however, is quantum. Hence, an efficient solution to the learning problem implies a quantum algorithm for SVP and SIVP. A main open question is whether this reduction can be made classical. We also present a (classical) public-key cryptosystem whose security is based on the hardness of the learning problem. By the main result, its security is also based on the worst-case quantum hardness of SVP and SIVP. Previous lattice-based public-key cryptosystems such as the one by Ajtai and Dwork were based only on unique-SVP, a special case of SVP. The new cryptosystem is much more efficient than previous cryptosystems: the public key is of size Õ(n2) and encrypting a message increases its size by a factor of Õ(n) (in previous cryptosystems these values are Õ(n4) and Õ(n2), respectively). In fact, under the assumption that all parties share a random bit string of length Õ(n2), the size of the public key can be reduced to Õ(n). 1
Trapdoors for Hard Lattices and New Cryptographic Constructions
, 2007
"... We show how to construct a variety of “trapdoor ” cryptographic tools assuming the worstcase hardness of standard lattice problems (such as approximating the shortest nonzero vector to within small factors). The applications include trapdoor functions with preimage sampling, simple and efficient “ha ..."
Abstract
-
Cited by 191 (26 self)
- Add to MetaCart
We show how to construct a variety of “trapdoor ” cryptographic tools assuming the worstcase hardness of standard lattice problems (such as approximating the shortest nonzero vector to within small factors). The applications include trapdoor functions with preimage sampling, simple and efficient “hash-and-sign ” digital signature schemes, universally composable oblivious transfer, and identity-based encryption. A core technical component of our constructions is an efficient algorithm that, given a basis of an arbitrary lattice, samples lattice points from a Gaussian-like probability distribution whose standard deviation is essentially the length of the longest vector in the basis. In particular, the crucial security property is that the output distribution of the algorithm is oblivious to the particular geometry of the given basis. ∗ Supported by the Herbert Kunzel Stanford Graduate Fellowship. † This material is based upon work supported by the National Science Foundation under Grants CNS-0716786 and CNS-0749931. Any opinions, findings, and conclusions or recommedations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. ‡ The majority of this work was performed while at SRI International. 1 1
Public-key cryptosystems from the worst-case shortest vector problem
, 2008
"... We construct public-key cryptosystems that are secure assuming the worst-case hardness of approximating the length of a shortest nonzero vector in an n-dimensional lattice to within a small poly(n) factor. Prior cryptosystems with worst-case connections were based either on the shortest vector probl ..."
Abstract
-
Cited by 152 (22 self)
- Add to MetaCart
(Show Context)
We construct public-key cryptosystems that are secure assuming the worst-case hardness of approximating the length of a shortest nonzero vector in an n-dimensional lattice to within a small poly(n) factor. Prior cryptosystems with worst-case connections were based either on the shortest vector problem for a special class of lattices (Ajtai and Dwork, STOC 1997; Regev, J. ACM 2004), or on the conjectured hardness of lattice problems for quantum algorithms (Regev, STOC 2005). Our main technical innovation is a reduction from certain variants of the shortest vector problem to corresponding versions of the “learning with errors” (LWE) problem; previously, only a quantum reduction of this kind was known. In addition, we construct new cryptosystems based on the search version of LWE, including a very natural chosen ciphertext-secure system that has a much simpler description and tighter underlying worst-case approximation factor than prior constructions.
Lossy Trapdoor Functions and Their Applications
, 2007
"... We propose a new general primitive called lossy trapdoor functions (lossy TDFs), and realize it under a variety of different number theoretic assumptions, including hardness of the decisional Diffie-Hellman (DDH) problem and the worst-case hardness of lattice problems. Using lossy TDFs, we develop a ..."
Abstract
-
Cited by 126 (21 self)
- Add to MetaCart
(Show Context)
We propose a new general primitive called lossy trapdoor functions (lossy TDFs), and realize it under a variety of different number theoretic assumptions, including hardness of the decisional Diffie-Hellman (DDH) problem and the worst-case hardness of lattice problems. Using lossy TDFs, we develop a new approach for constructing several important cryptographic primitives, including (injective) trapdoor functions, collision-resistant hash functions, oblivious transfer, and chosen ciphertext-secure cryptosystems. All of the constructions are simple, efficient, and black-box. These results resolve some long-standing open problems in cryptography. They give the first known injective trapdoor functions based on problems not directly related to integer factorization, and provide the first known CCA-secure cryptosystem based solely on the worst-case complexity of lattice problems.
On ideal lattices and learning with errors over rings
- In Proc. of EUROCRYPT, volume 6110 of LNCS
, 2010
"... The “learning with errors ” (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worst-case lattice problems, and in recent years it has served as the foundation for a pleth ..."
Abstract
-
Cited by 125 (18 self)
- Add to MetaCart
The “learning with errors ” (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora of cryptographic applications. Unfortunately, these applications are rather inefficient due to an inherent quadratic overhead in the use of LWE. A main open question was whether LWE and its applications could be made truly efficient by exploiting extra algebraic structure, as was done for lattice-based hash functions (and related primitives). We resolve this question in the affirmative by introducing an algebraic variant of LWE called ring-LWE, and proving that it too enjoys very strong hardness guarantees. Specifically, we show that the ring-LWE distribution is pseudorandom, assuming that worst-case problems on ideal lattices are hard for polynomial-time quantum algorithms. Applications include the first truly practical lattice-based public-key cryptosystem with an efficient security reduction; moreover, many of the other applications of LWE can be made much more efficient through the use of ring-LWE. 1
Bonsai Trees, or How to Delegate a Lattice Basis
, 2010
"... We introduce a new lattice-based cryptographic structure called a bonsai tree, and use it to resolve some important open problems in the area. Applications of bonsai trees include: • An efficient, stateless ‘hash-and-sign ’ signature scheme in the standard model (i.e., no random oracles), and • The ..."
Abstract
-
Cited by 123 (7 self)
- Add to MetaCart
(Show Context)
We introduce a new lattice-based cryptographic structure called a bonsai tree, and use it to resolve some important open problems in the area. Applications of bonsai trees include: • An efficient, stateless ‘hash-and-sign ’ signature scheme in the standard model (i.e., no random oracles), and • The first hierarchical identity-based encryption (HIBE) scheme (also in the standard model) that does not rely on bilinear pairings. Interestingly, the abstract properties of bonsai trees seem to have no known realization in conventional number-theoretic cryptography. 1
Efficient Fully Homomorphic Encryption from (Standard) LWE
- LWE, FOCS 2011, IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, IEEE
, 2011
"... We present a fully homomorphic encryption scheme that is based solely on the (standard) learning with errors (LWE) assumption. Applying known results on LWE, the security of our scheme is based on the worst-case hardness of “short vector problems ” on arbitrary lattices. Our construction improves on ..."
Abstract
-
Cited by 120 (6 self)
- Add to MetaCart
We present a fully homomorphic encryption scheme that is based solely on the (standard) learning with errors (LWE) assumption. Applying known results on LWE, the security of our scheme is based on the worst-case hardness of “short vector problems ” on arbitrary lattices. Our construction improves on previous works in two aspects: 1. We show that “somewhat homomorphic” encryption can be based on LWE, using a new relinearization technique. In contrast, all previous schemes relied on complexity assumptions related to ideals in various rings. 2. We deviate from the “squashing paradigm” used in all previous works. We introduce a new dimension-modulus reduction technique, which shortens the ciphertexts and reduces the decryption complexity of our scheme, without introducing additional assumptions. Our scheme has very short ciphertexts and we therefore use it to construct an asymptotically efficient LWE-based single-server private information retrieval (PIR) protocol. The communication complexity of our protocol (in the public-key model) is k · polylog(k) + log |DB | bits per single-bit query (here, k is a security parameter).
Simultaneous hardcore bits and cryptography against memory attacks
- IN TCC
, 2009
"... This paper considers two questions in cryptography. Cryptography Secure Against Memory Attacks. A particularly devastating side-channel attack against cryptosystems, termed the “memory attack”, was proposed recently. In this attack, a significant fraction of the bits of a secret key of a cryptograp ..."
Abstract
-
Cited by 116 (11 self)
- Add to MetaCart
(Show Context)
This paper considers two questions in cryptography. Cryptography Secure Against Memory Attacks. A particularly devastating side-channel attack against cryptosystems, termed the “memory attack”, was proposed recently. In this attack, a significant fraction of the bits of a secret key of a cryptographic algorithm can be measured by an adversary if the secret key is ever stored in a part of memory which can be accessed even after power has been turned off for a short amount of time. Such an attack has been shown to completely compromise the security of various cryptosystems in use, including the RSA cryptosystem and AES. We show that the public-key encryption scheme of Regev (STOC 2005), and the identity-based encryption scheme of Gentry, Peikert and Vaikuntanathan (STOC 2008) are remarkably robust against memory attacks where the adversary can measure a large fraction of the bits of the secret-key, or more generally, can compute an arbitrary function of the secret-key of bounded output length. This is done without increasing the size of the secret-key, and without introducing any
Secure Two-party Computation is Practical
- In Advances in Cryptology — Asiacrypt
, 2009
"... Abstract. Secure multi-party computation has been considered by the cryptographic community for a number of years. Until recently it has been a purely theoretical area, with few implementations with which to test various ideas. This has led to a number of optimisations being proposed which are quite ..."
Abstract
-
Cited by 103 (18 self)
- Add to MetaCart
Abstract. Secure multi-party computation has been considered by the cryptographic community for a number of years. Until recently it has been a purely theoretical area, with few implementations with which to test various ideas. This has led to a number of optimisations being proposed which are quite restricted in their application. In this paper we describe an implementation of the two-party case, using Yao’s garbled circuits, and present various algorithmic protocol improvements. These optimisations are analysed both theoretically and empirically, using experiments of various adversarial situations. Our experimental data is provided for reasonably large circuits, including one which performs an AES encryption, a problem which we discuss in the context of various possible applications. 1
Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries
- In TCC 2007, Springer-Verlag (LNCS 4392
, 2007
"... ..."