Results 1  10
of
12,564
On Discretization of Secondorder Derivatives in Smoothed Particle Hydrodynamics
"... Abstract—Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain nonlinear coefficients. In this paper, various methods used for discretization of secondorder spatial derivatives are investigated in the context of Smoothed Partic ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Particle Hydrodynamics. Three popular forms (i.e. ”double summation”, ”secondorder kernel derivation”, and ”difference scheme”) are studied using onedimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due
Online Learning with Kernels
, 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little u ..."
Abstract

Cited by 2831 (123 self)
 Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little
KernelBased Object Tracking
, 2003
"... A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatiallysmooth similarity fu ..."
Abstract

Cited by 900 (4 self)
 Add to MetaCart
A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatiallysmooth similarity
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1573 (83 self)
 Add to MetaCart
possible 5pixel products in 16x16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 881 (0 self)
 Add to MetaCart
A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n
Multiple kernel learning, conic duality, and the SMO algorithm
 In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract

Cited by 445 (31 self)
 Add to MetaCart
; moreover, the sequential minimal optimization (SMO) techniques that are essential in largescale implementations of the SVM cannot be applied because the cost function is nondifferentiable. We propose a novel dual formulation of the QCQP as a secondorder cone programming problem, and show how to exploit
LevelSpacing Distributions and the Airy Kernel
 COMMUNICATIONS IN MATHEMATICAL PHYSICS
, 1994
"... Scaling levelspacing distribution functions in the "bulk of the spectrum" in random matrix models of N x N hermitian matrices and then going to the limit N — » oo leads to the Fredholm determinant of the sine kernel sinπ(x — y)/π(x — y). Similarly a scaling limit at the "edge o ..."
Abstract

Cited by 430 (24 self)
 Add to MetaCart
;quot;edge of the spectrum " leads to the Airy kernel [Ai(x) Ai(y) — Ai (x) Ai(y)]/(x — y). In this paper we derive analogues for this Airy kernel of the following properties of the sine kernel: the completely integrable system of P.D.E.'s found by Jimbo, Miwa, Mori, and Sato; the expression, in the case of a
An almost ideal demand system.
 American Economic Review,
, 1980
"... Ever since Richard Stone (1954) first estimated a system of demand equations derived explicitly from consumer theory, there has been a continuing search for alternative specifications and functional forms. Many models have been proposed, but perhaps the most important in current use, apart from the ..."
Abstract

Cited by 636 (0 self)
 Add to MetaCart
secondorder approximation to any arbitrary direct or indirect utility function or, more rarely, a cost function.
Exploiting Generative Models in Discriminative Classifiers
 In Advances in Neural Information Processing Systems 11
, 1998
"... Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often resu ..."
Abstract

Cited by 551 (9 self)
 Add to MetaCart
result in classification performance superior to that of the model based approaches. An ideal classifier should combine these two complementary approaches. In this paper, we develop a natural way of achieving this combination by deriving kernel functions for use in discriminative methods such as support
Fast texture synthesis using treestructured vector quantization
, 2000
"... Figure 1: Our texture generation process takes an example texture patch (left) and a random noise (middle) as input, and modifies this random noise to make it look like the given example texture. The synthesized texture (right) can be of arbitrary size, and is perceived as very similar to the given ..."
Abstract

Cited by 561 (12 self)
 Add to MetaCart
, but runs two orders of magnitude faster. This permits us to apply texture synthesis to problems where it has traditionally been considered impractical. In particular, we have applied it to constrained synthesis for image editing and temporal texture generation. Our algorithm is derived from Markov Random
Results 1  10
of
12,564