Results 1  10
of
18,990
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 860 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
A PolynomialTime Approximation Algorithm for the Permanent of a Matrix with NonNegative Entries
 JOURNAL OF THE ACM
, 2004
"... We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small spec ..."
Abstract

Cited by 427 (27 self)
 Add to MetaCart
We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small
Fast probabilistic algorithms for verification of polynomial identities
 J. ACM
, 1980
"... ABSTRACT The starthng success of the RabmStrassenSolovay pnmahty algorithm, together with the intriguing foundattonal posstbthty that axtoms of randomness may constttute a useful fundamental source of mathemaucal truth independent of the standard axmmaUc structure of mathemaUcs, suggests a wgorous ..."
Abstract

Cited by 520 (1 self)
 Add to MetaCart
wgorous search for probabdisuc algonthms In dlustratmn of this observaUon, vanous fast probabdlsttc algonthms, with probability of correctness guaranteed a prion, are presented for testing polynomial ldentmes and propemes of systems of polynomials. Ancdlary fast algorithms for calculating resultants
Shallow Finite State Verification
, 2002
"... We consider the problem of verifying finite state properties of shallow programs; Le., programs where pointers from program variables to heapallocated objects are allowed, but where heapallocated objects may not themselves contain pointers. We prove a number of results relating the complexity of s ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
of such verification problems to the nature of the finite state machine used to specify the property. Some properties are shown to be intractable, but others which appear to be quite similar admit polynomialtime verification algorithms. While there has been much progress on many aspects of automated program
Typestate verification: Abstraction techniques and complexity results
 In Proc. of SAS’03, volume 2694 of LNCS
, 2003
"... Abstract. We consider the problem of typestate verification for shallow programs; i.e., programs where pointers from program variables to heapallocated objects are allowed, but where heapallocated objects may not themselves contain pointers. We prove a number of results relating the complexity of ..."
Abstract

Cited by 30 (10 self)
 Add to MetaCart
of verification to the nature of the finite state machine used to specify the property. Some properties are shown to be intractable, but others which appear to be quite similar admit polynomialtime verification algorithms. While there has been much progress on many aspects of automated program verification, we
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
Automatic verification of finitestate concurrent systems using temporal logic specifications
 ACM Transactions on Programming Languages and Systems
, 1986
"... We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent ..."
Abstract

Cited by 1388 (62 self)
 Add to MetaCart
We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent
The algorithmic analysis of hybrid systems
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract

Cited by 778 (71 self)
 Add to MetaCart
We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according
ESP: PathSensitive Program Verification in Polynomial Time
, 2002
"... In this paper, we present a new algorithm for partial program verification that runs in polynomial time and space. We are interested in checking that a program satisfies a given temporal safety property. Our insight is that by accurately modeling only those branches in a program for which the proper ..."
Abstract

Cited by 299 (4 self)
 Add to MetaCart
In this paper, we present a new algorithm for partial program verification that runs in polynomial time and space. We are interested in checking that a program satisfies a given temporal safety property. Our insight is that by accurately modeling only those branches in a program for which
Results 1  10
of
18,990