• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 71,313
Next 10 →

A Compositional Approach to Performance Modelling

by Jane Hillston , 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract - Cited by 757 (102 self) - Add to MetaCart
easily modelled. In this thesis a novel compositional approach to performance modelling is presented. This approach is based on a suitably enhanced process algebra, PEPA (Performance Evaluation Process Algebra). The compositional nature of the language provides benefits for model solution as well

A bayesian hierarchical model for learning natural scene categories

by Li Fei-fei - In CVPR , 2005
"... We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region ..."
Abstract - Cited by 948 (15 self) - Add to MetaCart
We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each

Comparison of discrimination methods for the classification of tumors using gene expression data

by Sandrine Dudoit, Jane Fridlyand, Terence P. Speed - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2002
"... A reliable and precise classification of tumors is essential for successful diagnosis and treatment of cancer. cDNA microarrays and high-density oligonucleotide chips are novel biotechnologies increasingly used in cancer research. By allowing the monitoring of expression levels in cells for thousand ..."
Abstract - Cited by 770 (6 self) - Add to MetaCart
gene expression data is an important aspect of this novel approach to cancer classification. This article compares the performance of different discrimination methods for the classification of tumors based on gene expression data. The methods include nearest-neighbor classifiers, linear discriminant

A Survey of active network Research

by David L. Tennenhouse, Jonathan M. Smith - IEEE Communications , 1997
"... Active networks are a novel approach to network architecture in which the switches of the network perform customized computations on the messages flowing through them. This approach is motivated by both lead user applications, which perform user-driven computation at nodes within the network today, ..."
Abstract - Cited by 549 (29 self) - Add to MetaCart
Active networks are a novel approach to network architecture in which the switches of the network perform customized computations on the messages flowing through them. This approach is motivated by both lead user applications, which perform user-driven computation at nodes within the network today

Cognitive Radio: Brain-Empowered Wireless Communications

by Simon Haykin , 2005
"... Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and use ..."
Abstract - Cited by 1541 (4 self) - Add to MetaCart
Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment

Probabilistic Latent Semantic Indexing

by Thomas Hofmann , 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract - Cited by 1225 (10 self) - Add to MetaCart
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized

HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks

by Ossama Younis, Sonia Fahmy - IEEE TRANS. MOBILE COMPUTING , 2004
"... Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. In this paper, we propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed ..."
Abstract - Cited by 590 (1 self) - Add to MetaCart
Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. In this paper, we propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our

Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach

by Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao - DATA MINING AND KNOWLEDGE DISCOVERY , 2004
"... Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still co ..."
Abstract - Cited by 1752 (64 self) - Add to MetaCart
Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still

Shape Matching and Object Recognition Using Shape Contexts

by Serge Belongie, Jitendra Malik, Jan Puzicha - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv- ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract - Cited by 1809 (21 self) - Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv- ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning

Text Classification using String Kernels

by Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, Chris Watkins
"... We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguo ..."
Abstract - Cited by 495 (7 self) - Add to MetaCart
We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily
Next 10 →
Results 1 - 10 of 71,313
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University