Results 1  10
of
1,800,063
Some optimal inapproximability results
, 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract

Cited by 751 (11 self)
 Add to MetaCart
for the efficient approximability of many optimization problems studied previously. In particular, for MaxE2Sat, MaxCut, MaxdiCut, and Vertex cover. Warning: Essentially this paper has been published in JACM and is subject to copyright restrictions. In particular it is for personal use only.
Two” many optimalities
 Biol. Philos
, 2002
"... In evolutionary biology a trait is said to be optimal if it maximizes the fitness of the organism, that is, if the trait allows the organism to survive and reproduce better than any other competing trait. In engineering, a design is said to be optimal if it complies with its functional requirements ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In evolutionary biology a trait is said to be optimal if it maximizes the fitness of the organism, that is, if the trait allows the organism to survive and reproduce better than any other competing trait. In engineering, a design is said to be optimal if it complies with its functional requirements
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 996 (3 self)
 Add to MetaCart
. Control dependence5 are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
 Evolutionary Computation
, 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract

Cited by 540 (5 self)
 Add to MetaCart
In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about
Unrealistic optimism about future life events.
 Journal of Personality and Social Psychology,
, 1980
"... Two studies investigated the tendency of people to be unrealistically optimistic about future life events. In Study 1, 258 college students estimated how much their own chances of experiencing 42 events differed from the chances of their classmates. Overall, they rated their own chances to be above ..."
Abstract

Cited by 531 (0 self)
 Add to MetaCart
outcomes and fail to realize that others may have just as many factors in their favor. Students listed the factors that they thought influenced their own chances of experiencing eight future events. When such lists were read by a second group of students, the amount of unrealistic optimism shown
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1516 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 819 (27 self)
 Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains
Efficient exact stochastic simulation of chemical systems with many species and many channels
 J. Phys. Chem. A
, 2000
"... There are two fundamental ways to view coupled systems of chemical equations: as continuous, represented by differential equations whose variables are concentrations, or as discrete, represented by stochastic processes whose variables are numbers of molecules. Although the former is by far more comm ..."
Abstract

Cited by 426 (5 self)
 Add to MetaCart
simulation methods to simulate trajectories of discrete, stochastic systems, (methods that are rigorously equivalent to the Master Equation approach) but these do not scale well to systems with many reaction pathways. This paper presents the Next Reaction Method, an exact algorithm to simulate coupled
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 515 (4 self)
 Add to MetaCart
related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies
SIS: A System for Sequential Circuit Synthesis
, 1992
"... SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential inputoutput b ..."
Abstract

Cited by 525 (44 self)
 Add to MetaCart
output behavior. Many different programs and algorithms have been integrated into SIS, allowing the user to choose among a variety of techniques at each stage of the process. It is built on top of MISII [5] and includes all (combinational) optimization techniques therein as well as many enhancements. SIS serves
Results 1  10
of
1,800,063