• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 24,593
Next 10 →

Sampling Large Databases for Association Rules

by Hannu Toivonen , 1996
"... Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce the data ..."
Abstract - Cited by 470 (3 self) - Add to MetaCart
Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce

Query evaluation techniques for large databases

by Goetz Graefe - ACM COMPUTING SURVEYS , 1993
"... Database management systems will continue to manage large data volumes. Thus, efficient algorithms for accessing and manipulating large sets and sequences will be required to provide acceptable performance. The advent of object-oriented and extensible database systems will not solve this problem. On ..."
Abstract - Cited by 767 (11 self) - Add to MetaCart
Database management systems will continue to manage large data volumes. Thus, efficient algorithms for accessing and manipulating large sets and sequences will be required to provide acceptable performance. The advent of object-oriented and extensible database systems will not solve this problem

An efficient algorithm for mining association rules in large databases

by Ashok Savasere, Edward Omiecinski, Shamkant Navathe , 1995
"... Mining for a.ssociation rules between items in a large database of sales transactions has been described as an important database mining problem. In this paper we present an effi-cient algorithm for mining association rules that is fundamentally different from known al-gorithms. Compared to previous ..."
Abstract - Cited by 437 (0 self) - Add to MetaCart
Mining for a.ssociation rules between items in a large database of sales transactions has been described as an important database mining problem. In this paper we present an effi-cient algorithm for mining association rules that is fundamentally different from known al-gorithms. Compared

Mining Association Rules between Sets of Items in Large Databases

by Rakesh Agrawal, Tomasz Imielinski, Arun Swami - IN: PROCEEDINGS OF THE 1993 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, WASHINGTON DC (USA , 1993
"... We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel esti ..."
Abstract - Cited by 3331 (16 self) - Add to MetaCart
We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel

BIRCH: an efficient data clustering method for very large databases

by Tian Zhang, Raghu Ramakrishnan, Miron Livny - In Proc. of the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD , 1996
"... Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multi-dir nensional clataset. Prior work does not adequately address the problem of ..."
Abstract - Cited by 576 (2 self) - Add to MetaCart
of large datasets and minimization of 1/0 costs. This paper presents a data clustering method named Bfll (;”H (Balanced Iterative Reducing and Clustering using Hierarchies), and demonstrates that it is especially suitable for very large databases. BIRCH incrementally and clynamicall y clusters incoming

The Merge/Purge Problem for Large Databases

by Mauricio Hernandez, Mauricio A. Hern'andez, Salvatore Stolfo - In Proceedings of the 1995 ACM SIGMOD , 1995
"... Many commercial organizations routinely gather large numbers of databases for various marketing and business analysis functions. The task is to correlate information from different databases by identifying distinct individuals that appear in a number of different databases typically in an inconsiste ..."
Abstract - Cited by 359 (3 self) - Add to MetaCart
Many commercial organizations routinely gather large numbers of databases for various marketing and business analysis functions. The task is to correlate information from different databases by identifying distinct individuals that appear in a number of different databases typically

Discovery of Multiple-Level Association Rules from Large Databases

by Jiawei Han, Yongjian Fu - In Proc. 1995 Int. Conf. Very Large Data Bases , 1995
"... Previous studies on mining association rules find rules at single concept level, however, mining association rules at multiple concept levels may lead to the discovery of more specific and concrete knowledge from data. In this study, a top-down progressive deepening method is developed for mining mu ..."
Abstract - Cited by 463 (34 self) - Add to MetaCart
multiplelevel association rules from large transaction databases by extension of some existing association rule mining techniques. A group of variant algorithms are proposed based on the ways of sharing intermediate results, with the relative performance tested on different kinds of data. Relaxation of the rule

Scaling Clustering Algorithms to Large Databases”, Microsoft Research Report:

by Paul S Bradley , Usama M Fayyad , Cory A Reina , Fayyad Reina Bradley , P S Bradley , Usama Fayyad , Cory Reina , 1998
"... Abstract Practical clustering algorithms require multiple data scans to achieve convergence. For large databases, these scans become prohibitively expensive. We present a scalable clustering framework applicable to a wide class of iterative clustering. We require at most one scan of the database. I ..."
Abstract - Cited by 304 (5 self) - Add to MetaCart
Abstract Practical clustering algorithms require multiple data scans to achieve convergence. For large databases, these scans become prohibitively expensive. We present a scalable clustering framework applicable to a wide class of iterative clustering. We require at most one scan of the database

A density-based algorithm for discovering clusters in large spatial databases with noise

by Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu , 1996
"... Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clu ..."
Abstract - Cited by 1786 (70 self) - Add to MetaCart
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery

Imagenet: A large-scale hierarchical image database

by Jia Deng, Wei Dong, Richard Socher, Li-jia Li, Kai Li, Li Fei-fei - In CVPR , 2009
"... The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce her ..."
Abstract - Cited by 840 (28 self) - Add to MetaCart
datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We
Next 10 →
Results 1 - 10 of 24,593
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University