Results 1  10
of
3,690
The Foundation of a Generic Theorem Prover
 Journal of Automated Reasoning
, 1989
"... Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized. Isabell ..."
Abstract

Cited by 471 (48 self)
 Add to MetaCart
Isabelle [28, 30] is an interactive theorem prover that supports a variety of logics. It represents rules as propositions (not as functions) and builds proofs by combining rules. These operations constitute a metalogic (or `logical framework') in which the objectlogics are formalized
Simplify: A theorem prover for program checking
 J. ACM
, 2003
"... This paper provides a detailed description of the automatic theorem prover Simplify, which is the proof engine of the Extended Static Checkers ESC/Java and ESC/Modula3. Simplify uses the NelsonOppen method to combine decision procedures for several important theories, and also employs a matcher to ..."
Abstract

Cited by 431 (2 self)
 Add to MetaCart
This paper provides a detailed description of the automatic theorem prover Simplify, which is the proof engine of the Extended Static Checkers ESC/Java and ESC/Modula3. Simplify uses the NelsonOppen method to combine decision procedures for several important theories, and also employs a matcher
Random testing in isabelle/hol
 Software Engineering and Formal Methods (SEFM 2004
, 2004
"... When developing nontrivial formalizations in a theorem prover, a considerable amount of time is devoted to “debugging ” specifications and conjectures by failed proof attempts. To detect such problems early in the proof and save development time, we have extended the Isabelle theorem prover with a ..."
Abstract

Cited by 49 (2 self)
 Add to MetaCart
When developing nontrivial formalizations in a theorem prover, a considerable amount of time is devoted to “debugging ” specifications and conjectures by failed proof attempts. To detect such problems early in the proof and save development time, we have extended the Isabelle theorem prover with a
Using Yices as an automated solver in Isabelle/HOL
 In Automated Formal Methods’08
, 2008
"... We describe our integration of the Yices SMT solver into the Isabelle theorem prover. This integration allows users to take advantage of the powerful SMT solving techniques within the interactive theorem proving environment of Isabelle, considerably increasing the automation level for a significant ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
We describe our integration of the Yices SMT solver into the Isabelle theorem prover. This integration allows users to take advantage of the powerful SMT solving techniques within the interactive theorem proving environment of Isabelle, considerably increasing the automation level for a significant
Automatic verification of finitestate concurrent systems using temporal logic specifications
 ACM Transactions on Programming Languages and Systems
, 1986
"... We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent ..."
Abstract

Cited by 1388 (62 self)
 Add to MetaCart
system. We also show how this approach can be adapted to handle fairness. We argue that our technique can provide a practical alternative to manual proof construction or use of a mechanical theorem prover for verifying many finitestate concurrent systems. Experimental results show that state machines
The ChurchRosser Theorem in Isabelle: A Proof Porting Experiment
, 1995
"... This paper describes a proof of the ChurchRosser theorem for the pure calculus formalised in the Isabelle theorem prover. The initial version of the proof is ported from a similar proof done in the Coq proof assistant by Gérard Huet, but a number of optimisations have been performed. The developme ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
This paper describes a proof of the ChurchRosser theorem for the pure calculus formalised in the Isabelle theorem prover. The initial version of the proof is ported from a similar proof done in the Coq proof assistant by Gérard Huet, but a number of optimisations have been performed
Patternbased Subterm Selection in Isabelle
"... Abstract. This article presents a patternbased language designed to select (a set of) subterms of a given term in a concise and robust way. Building on this language, we implement a singlestep rewriting tactic in the Isabelle theorem prover, which removes the need for obscure "occurrence nu ..."
Abstract
 Add to MetaCart
Abstract. This article presents a patternbased language designed to select (a set of) subterms of a given term in a concise and robust way. Building on this language, we implement a singlestep rewriting tactic in the Isabelle theorem prover, which removes the need for obscure "
Construction of abstract state graphs with PVS
, 1997
"... We describe in this paper a method based on abstract interpretation which, from a theoretical point of view, is similar to the splitting methods proposed in [DGG93, Dam96] but the weaker abstract transition relation we use, allows us to construct automatically abstract state graphs paying a reasonab ..."
Abstract

Cited by 742 (10 self)
 Add to MetaCart
. This successor m 0 can be determined exactly if for each predicate ' i it can be determined if ' i or :' i is a postcondition of m for ø . In order to do this, we use the Pvs theorem prover [SOR93] and our Pvsinterface defined in [GS96]. If the tactic used for the proof of the verification
Model Checking Programs
, 2003
"... The majority of work carried out in the formal methods community throughout the last three decades has (for good reasons) been devoted to special languages designed to make it easier to experiment with mechanized formal methods such as theorem provers, proof checkers and model checkers. In this pape ..."
Abstract

Cited by 592 (63 self)
 Add to MetaCart
The majority of work carried out in the formal methods community throughout the last three decades has (for good reasons) been devoted to special languages designed to make it easier to experiment with mechanized formal methods such as theorem provers, proof checkers and model checkers
Results 1  10
of
3,690